Autor Tema: ¿Para que sirve esto y cómo se compila?.  (Leído 5302 veces)

Desconectado Pengüin

  • Member
  • ***
  • Mensajes: 242
  • www.daboweb.com
¿Para que sirve esto y cómo se compila?.
« en: 21 de Julio de 2012, 08:36:53 pm »
Lo he intentado con gcc y nada no puedo compilarlo intente con g++ e igual.
El archivo se llama :
Citar
drivers_gpu_drm_radeon_r600.c

Y su contenido es :

Citar
/*
 * Copyright 2008 Advanced Micro Devices, Inc.
 * Copyright 2008 Red Hat Inc.
 * Copyright 2009 Jerome Glisse.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Dave Airlie
 *          Alex Deucher
 *          Jerome Glisse
 */
#include <linux/seq_file.h>
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "radeon_mode.h"
#include "r600d.h"
#include "atom.h"
#include "avivod.h"

#define PFP_UCODE_SIZE 576
#define PM4_UCODE_SIZE 1792
#define RLC_UCODE_SIZE 768
#define R700_PFP_UCODE_SIZE 848
#define R700_PM4_UCODE_SIZE 1360
#define R700_RLC_UCODE_SIZE 1024

/* Firmware Names */
MODULE_FIRMWARE("radeon/R600_pfp.bin");
MODULE_FIRMWARE("radeon/R600_me.bin");
MODULE_FIRMWARE("radeon/RV610_pfp.bin");
MODULE_FIRMWARE("radeon/RV610_me.bin");
MODULE_FIRMWARE("radeon/RV630_pfp.bin");
MODULE_FIRMWARE("radeon/RV630_me.bin");
MODULE_FIRMWARE("radeon/RV620_pfp.bin");
MODULE_FIRMWARE("radeon/RV620_me.bin");
MODULE_FIRMWARE("radeon/RV635_pfp.bin");
MODULE_FIRMWARE("radeon/RV635_me.bin");
MODULE_FIRMWARE("radeon/RV670_pfp.bin");
MODULE_FIRMWARE("radeon/RV670_me.bin");
MODULE_FIRMWARE("radeon/RS780_pfp.bin");
MODULE_FIRMWARE("radeon/RS780_me.bin");
MODULE_FIRMWARE("radeon/RV770_pfp.bin");
MODULE_FIRMWARE("radeon/RV770_me.bin");
MODULE_FIRMWARE("radeon/RV730_pfp.bin");
MODULE_FIRMWARE("radeon/RV730_me.bin");
MODULE_FIRMWARE("radeon/RV710_pfp.bin");
MODULE_FIRMWARE("radeon/RV710_me.bin");
MODULE_FIRMWARE("radeon/R600_rlc.bin");
MODULE_FIRMWARE("radeon/R700_rlc.bin");

int r600_debugfs_mc_info_init(struct radeon_device *rdev);

/* r600,rv610,rv630,rv620,rv635,rv670 */
int r600_mc_wait_for_idle(struct radeon_device *rdev);
void r600_gpu_init(struct radeon_device *rdev);
void r600_fini(struct radeon_device *rdev);

/* hpd for digital panel detect/disconnect */
bool r600_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd)
{
   bool connected = false;

   if (ASIC_IS_DCE3(rdev)) {
      switch (hpd) {
      case RADEON_HPD_1:
         if (RREG32(DC_HPD1_INT_STATUS) & DC_HPDx_SENSE)
            connected = true;
         break;
      case RADEON_HPD_2:
         if (RREG32(DC_HPD2_INT_STATUS) & DC_HPDx_SENSE)
            connected = true;
         break;
      case RADEON_HPD_3:
         if (RREG32(DC_HPD3_INT_STATUS) & DC_HPDx_SENSE)
            connected = true;
         break;
      case RADEON_HPD_4:
         if (RREG32(DC_HPD4_INT_STATUS) & DC_HPDx_SENSE)
            connected = true;
         break;
         /* DCE 3.2 */
      case RADEON_HPD_5:
         if (RREG32(DC_HPD5_INT_STATUS) & DC_HPDx_SENSE)
            connected = true;
         break;
      case RADEON_HPD_6:
         if (RREG32(DC_HPD6_INT_STATUS) & DC_HPDx_SENSE)
            connected = true;
         break;
      default:
         break;
      }
   } else {
      switch (hpd) {
      case RADEON_HPD_1:
         if (RREG32(DC_HOT_PLUG_DETECT1_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE)
            connected = true;
         break;
      case RADEON_HPD_2:
         if (RREG32(DC_HOT_PLUG_DETECT2_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE)
            connected = true;
         break;
      case RADEON_HPD_3:
         if (RREG32(DC_HOT_PLUG_DETECT3_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE)
            connected = true;
         break;
      default:
         break;
      }
   }
   return connected;
}

void r600_hpd_set_polarity(struct radeon_device *rdev,
            enum radeon_hpd_id hpd)
{
   u32 tmp;
   bool connected = r600_hpd_sense(rdev, hpd);

   if (ASIC_IS_DCE3(rdev)) {
      switch (hpd) {
      case RADEON_HPD_1:
         tmp = RREG32(DC_HPD1_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HPDx_INT_POLARITY;
         else
            tmp |= DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD1_INT_CONTROL, tmp);
         break;
      case RADEON_HPD_2:
         tmp = RREG32(DC_HPD2_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HPDx_INT_POLARITY;
         else
            tmp |= DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD2_INT_CONTROL, tmp);
         break;
      case RADEON_HPD_3:
         tmp = RREG32(DC_HPD3_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HPDx_INT_POLARITY;
         else
            tmp |= DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD3_INT_CONTROL, tmp);
         break;
      case RADEON_HPD_4:
         tmp = RREG32(DC_HPD4_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HPDx_INT_POLARITY;
         else
            tmp |= DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD4_INT_CONTROL, tmp);
         break;
      case RADEON_HPD_5:
         tmp = RREG32(DC_HPD5_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HPDx_INT_POLARITY;
         else
            tmp |= DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD5_INT_CONTROL, tmp);
         break;
         /* DCE 3.2 */
      case RADEON_HPD_6:
         tmp = RREG32(DC_HPD6_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HPDx_INT_POLARITY;
         else
            tmp |= DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD6_INT_CONTROL, tmp);
         break;
      default:
         break;
      }
   } else {
      switch (hpd) {
      case RADEON_HPD_1:
         tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY;
         else
            tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY;
         WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp);
         break;
      case RADEON_HPD_2:
         tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY;
         else
            tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY;
         WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp);
         break;
      case RADEON_HPD_3:
         tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL);
         if (connected)
            tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY;
         else
            tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY;
         WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp);
         break;
      default:
         break;
      }
   }
}

void r600_hpd_init(struct radeon_device *rdev)
{
   struct drm_device *dev = rdev->ddev;
   struct drm_connector *connector;

   if (ASIC_IS_DCE3(rdev)) {
      u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) | DC_HPDx_RX_INT_TIMER(0xfa);
      if (ASIC_IS_DCE32(rdev))
         tmp |= DC_HPDx_EN;

      list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
         struct radeon_connector *radeon_connector = to_radeon_connector(connector);
         switch (radeon_connector->hpd.hpd) {
         case RADEON_HPD_1:
            WREG32(DC_HPD1_CONTROL, tmp);
            rdev->irq.hpd[0] = true;
            break;
         case RADEON_HPD_2:
            WREG32(DC_HPD2_CONTROL, tmp);
            rdev->irq.hpd[1] = true;
            break;
         case RADEON_HPD_3:
            WREG32(DC_HPD3_CONTROL, tmp);
            rdev->irq.hpd[2] = true;
            break;
         case RADEON_HPD_4:
            WREG32(DC_HPD4_CONTROL, tmp);
            rdev->irq.hpd[3] = true;
            break;
            /* DCE 3.2 */
         case RADEON_HPD_5:
            WREG32(DC_HPD5_CONTROL, tmp);
            rdev->irq.hpd[4] = true;
            break;
         case RADEON_HPD_6:
            WREG32(DC_HPD6_CONTROL, tmp);
            rdev->irq.hpd[5] = true;
            break;
         default:
            break;
         }
      }
   } else {
      list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
         struct radeon_connector *radeon_connector = to_radeon_connector(connector);
         switch (radeon_connector->hpd.hpd) {
         case RADEON_HPD_1:
            WREG32(DC_HOT_PLUG_DETECT1_CONTROL, DC_HOT_PLUG_DETECTx_EN);
            rdev->irq.hpd[0] = true;
            break;
         case RADEON_HPD_2:
            WREG32(DC_HOT_PLUG_DETECT2_CONTROL, DC_HOT_PLUG_DETECTx_EN);
            rdev->irq.hpd[1] = true;
            break;
         case RADEON_HPD_3:
            WREG32(DC_HOT_PLUG_DETECT3_CONTROL, DC_HOT_PLUG_DETECTx_EN);
            rdev->irq.hpd[2] = true;
            break;
         default:
            break;
         }
      }
   }
   if (rdev->irq.installed)
      r600_irq_set(rdev);
}

void r600_hpd_fini(struct radeon_device *rdev)
{
   struct drm_device *dev = rdev->ddev;
   struct drm_connector *connector;

   if (ASIC_IS_DCE3(rdev)) {
      list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
         struct radeon_connector *radeon_connector = to_radeon_connector(connector);
         switch (radeon_connector->hpd.hpd) {
         case RADEON_HPD_1:
            WREG32(DC_HPD1_CONTROL, 0);
            rdev->irq.hpd[0] = false;
            break;
         case RADEON_HPD_2:
            WREG32(DC_HPD2_CONTROL, 0);
            rdev->irq.hpd[1] = false;
            break;
         case RADEON_HPD_3:
            WREG32(DC_HPD3_CONTROL, 0);
            rdev->irq.hpd[2] = false;
            break;
         case RADEON_HPD_4:
            WREG32(DC_HPD4_CONTROL, 0);
            rdev->irq.hpd[3] = false;
            break;
            /* DCE 3.2 */
         case RADEON_HPD_5:
            WREG32(DC_HPD5_CONTROL, 0);
            rdev->irq.hpd[4] = false;
            break;
         case RADEON_HPD_6:
            WREG32(DC_HPD6_CONTROL, 0);
            rdev->irq.hpd[5] = false;
            break;
         default:
            break;
         }
      }
   } else {
      list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
         struct radeon_connector *radeon_connector = to_radeon_connector(connector);
         switch (radeon_connector->hpd.hpd) {
         case RADEON_HPD_1:
            WREG32(DC_HOT_PLUG_DETECT1_CONTROL, 0);
            rdev->irq.hpd[0] = false;
            break;
         case RADEON_HPD_2:
            WREG32(DC_HOT_PLUG_DETECT2_CONTROL, 0);
            rdev->irq.hpd[1] = false;
            break;
         case RADEON_HPD_3:
            WREG32(DC_HOT_PLUG_DETECT3_CONTROL, 0);
            rdev->irq.hpd[2] = false;
            break;
         default:
            break;
         }
      }
   }
}

/*
 * R600 PCIE GART
 */
void r600_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
   unsigned i;
   u32 tmp;

   /* flush hdp cache so updates hit vram */
   WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);

   WREG32(VM_CONTEXT0_INVALIDATION_LOW_ADDR, rdev->mc.gtt_start >> 12);
   WREG32(VM_CONTEXT0_INVALIDATION_HIGH_ADDR, (rdev->mc.gtt_end - 1) >> 12);
   WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1));
   for (i = 0; i < rdev->usec_timeout; i++) {
      /* read MC_STATUS */
      tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE);
      tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT;
      if (tmp == 2) {
         printk(KERN_WARNING "[drm] r600 flush TLB failed\n");
         return;
      }
      if (tmp) {
         return;
      }
      udelay(1);
   }
}

int r600_pcie_gart_init(struct radeon_device *rdev)
{
   int r;

   if (rdev->gart.table.vram.robj) {
      WARN(1, "R600 PCIE GART already initialized.\n");
      return 0;
   }
   /* Initialize common gart structure */
   r = radeon_gart_init(rdev);
   if (r)
      return r;
   rdev->gart.table_size = rdev->gart.num_gpu_pages * 8;
   return radeon_gart_table_vram_alloc(rdev);
}

int r600_pcie_gart_enable(struct radeon_device *rdev)
{
   u32 tmp;
   int r, i;

   if (rdev->gart.table.vram.robj == NULL) {
      dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
      return -EINVAL;
   }
   r = radeon_gart_table_vram_pin(rdev);
   if (r)
      return r;

   /* Setup L2 cache */
   WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
            ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
            EFFECTIVE_L2_QUEUE_SIZE(7));
   WREG32(VM_L2_CNTL2, 0);
   WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1));
   /* Setup TLB control */
   tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
      SYSTEM_ACCESS_MODE_NOT_IN_SYS |
      EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) |
      ENABLE_WAIT_L2_QUERY;
   WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING);
   WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
   WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
   WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
   WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
   WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
   WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
            RANGE_PROTECTION_FAULT_ENABLE_DEFAULT);
   WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
         (u32)(rdev->dummy_page.addr >> 12));
   for (i = 1; i < 7; i++)
      WREG32(VM_CONTEXT0_CNTL + (i * 4), 0);

   r600_pcie_gart_tlb_flush(rdev);
   rdev->gart.ready = true;
   return 0;
}

void r600_pcie_gart_disable(struct radeon_device *rdev)
{
   u32 tmp;
   int i, r;

   /* Disable all tables */
   for (i = 0; i < 7; i++)
      WREG32(VM_CONTEXT0_CNTL + (i * 4), 0);

   /* Disable L2 cache */
   WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING |
            EFFECTIVE_L2_QUEUE_SIZE(7));
   WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1));
   /* Setup L1 TLB control */
   tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) |
      ENABLE_WAIT_L2_QUERY;
   WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp);
   if (rdev->gart.table.vram.robj) {
      r = radeon_bo_reserve(rdev->gart.table.vram.robj, false);
      if (likely(r == 0)) {
         radeon_bo_kunmap(rdev->gart.table.vram.robj);
         radeon_bo_unpin(rdev->gart.table.vram.robj);
         radeon_bo_unreserve(rdev->gart.table.vram.robj);
      }
   }
}

void r600_pcie_gart_fini(struct radeon_device *rdev)
{
   r600_pcie_gart_disable(rdev);
   radeon_gart_table_vram_free(rdev);
   radeon_gart_fini(rdev);
}

void r600_agp_enable(struct radeon_device *rdev)
{
   u32 tmp;
   int i;

   /* Setup L2 cache */
   WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
            ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
            EFFECTIVE_L2_QUEUE_SIZE(7));
   WREG32(VM_L2_CNTL2, 0);
   WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1));
   /* Setup TLB control */
   tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
      SYSTEM_ACCESS_MODE_NOT_IN_SYS |
      EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) |
      ENABLE_WAIT_L2_QUERY;
   WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING);
   WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp);
   WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
   WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
   for (i = 0; i < 7; i++)
      WREG32(VM_CONTEXT0_CNTL + (i * 4), 0);
}

int r600_mc_wait_for_idle(struct radeon_device *rdev)
{
   unsigned i;
   u32 tmp;

   for (i = 0; i < rdev->usec_timeout; i++) {
      /* read MC_STATUS */
      tmp = RREG32(R_000E50_SRBM_STATUS) & 0x3F00;
      if (!tmp)
         return 0;
      udelay(1);
   }
   return -1;
}

static void r600_mc_program(struct radeon_device *rdev)
{
   struct rv515_mc_save save;
   u32 tmp;
   int i, j;

   /* Initialize HDP */
   for (i = 0, j = 0; i < 32; i++, j += 0x18) {
      WREG32((0x2c14 + j), 0x00000000);
      WREG32((0x2c18 + j), 0x00000000);
      WREG32((0x2c1c + j), 0x00000000);
      WREG32((0x2c20 + j), 0x00000000);
      WREG32((0x2c24 + j), 0x00000000);
   }
   WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);

   rv515_mc_stop(rdev, &save);
   if (r600_mc_wait_for_idle(rdev)) {
      dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
   }
   /* Lockout access through VGA aperture (doesn't exist before R600) */
   WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
   /* Update configuration */
   if (rdev->flags & RADEON_IS_AGP) {
      if (rdev->mc.vram_start < rdev->mc.gtt_start) {
         /* VRAM before AGP */
         WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
            rdev->mc.vram_start >> 12);
         WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
            rdev->mc.gtt_end >> 12);
      } else {
         /* VRAM after AGP */
         WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
            rdev->mc.gtt_start >> 12);
         WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
            rdev->mc.vram_end >> 12);
      }
   } else {
      WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12);
      WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12);
   }
   WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, 0);
   tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
   tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
   WREG32(MC_VM_FB_LOCATION, tmp);
   WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
   WREG32(HDP_NONSURFACE_INFO, (2 << 7));
   WREG32(HDP_NONSURFACE_SIZE, rdev->mc.mc_vram_size | 0x3FF);
   if (rdev->flags & RADEON_IS_AGP) {
      WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 22);
      WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 22);
      WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22);
   } else {
      WREG32(MC_VM_AGP_BASE, 0);
      WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
      WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
   }
   if (r600_mc_wait_for_idle(rdev)) {
      dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
   }
   rv515_mc_resume(rdev, &save);
   /* we need to own VRAM, so turn off the VGA renderer here
    * to stop it overwriting our objects */
   rv515_vga_render_disable(rdev);
}

int r600_mc_init(struct radeon_device *rdev)
{
   fixed20_12 a;
   u32 tmp;
   int chansize, numchan;

   /* Get VRAM informations */
   rdev->mc.vram_is_ddr = true;
   tmp = RREG32(RAMCFG);
   if (tmp & CHANSIZE_OVERRIDE) {
      chansize = 16;
   } else if (tmp & CHANSIZE_MASK) {
      chansize = 64;
   } else {
      chansize = 32;
   }
   tmp = RREG32(CHMAP);
   switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
   case 0:
   default:
      numchan = 1;
      break;
   case 1:
      numchan = 2;
      break;
   case 2:
      numchan = 4;
      break;
   case 3:
      numchan = 8;
      break;
   }
   rdev->mc.vram_width = numchan * chansize;
   /* Could aper size report 0 ? */
   rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
   rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
   /* Setup GPU memory space */
   rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE);
   rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE);

   if (rdev->mc.mc_vram_size > rdev->mc.aper_size)
      rdev->mc.mc_vram_size = rdev->mc.aper_size;

   if (rdev->mc.real_vram_size > rdev->mc.aper_size)
      rdev->mc.real_vram_size = rdev->mc.aper_size;

   if (rdev->flags & RADEON_IS_AGP) {
      /* gtt_size is setup by radeon_agp_init */
      rdev->mc.gtt_location = rdev->mc.agp_base;
      tmp = 0xFFFFFFFFUL - rdev->mc.agp_base - rdev->mc.gtt_size;
      /* Try to put vram before or after AGP because we
       * we want SYSTEM_APERTURE to cover both VRAM and
       * AGP so that GPU can catch out of VRAM/AGP access
       */
      if (rdev->mc.gtt_location > rdev->mc.mc_vram_size) {
         /* Enough place before */
         rdev->mc.vram_location = rdev->mc.gtt_location -
                     rdev->mc.mc_vram_size;
      } else if (tmp > rdev->mc.mc_vram_size) {
         /* Enough place after */
         rdev->mc.vram_location = rdev->mc.gtt_location +
                     rdev->mc.gtt_size;
      } else {
         /* Try to setup VRAM then AGP might not
          * not work on some card
          */
         rdev->mc.vram_location = 0x00000000UL;
         rdev->mc.gtt_location = rdev->mc.mc_vram_size;
      }
   } else {
      rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024;
      rdev->mc.vram_location = (RREG32(MC_VM_FB_LOCATION) &
                     0xFFFF) << 24;
      tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size;
      if ((0xFFFFFFFFUL - tmp) >= rdev->mc.gtt_size) {
         /* Enough place after vram */
         rdev->mc.gtt_location = tmp;
      } else if (rdev->mc.vram_location >= rdev->mc.gtt_size) {
         /* Enough place before vram */
         rdev->mc.gtt_location = 0;
      } else {
         /* Not enough place after or before shrink
          * gart size
          */
         if (rdev->mc.vram_location > (0xFFFFFFFFUL - tmp)) {
            rdev->mc.gtt_location = 0;
            rdev->mc.gtt_size = rdev->mc.vram_location;
         } else {
            rdev->mc.gtt_location = tmp;
            rdev->mc.gtt_size = 0xFFFFFFFFUL - tmp;
         }
      }
      rdev->mc.gtt_location = rdev->mc.mc_vram_size;
   }
   rdev->mc.vram_start = rdev->mc.vram_location;
   rdev->mc.vram_end = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
   rdev->mc.gtt_start = rdev->mc.gtt_location;
   rdev->mc.gtt_end = rdev->mc.gtt_location + rdev->mc.gtt_size - 1;
   /* FIXME: we should enforce default clock in case GPU is not in
    * default setup
    */
   a.full = rfixed_const(100);
   rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk);
   rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);

   if (rdev->flags & RADEON_IS_IGP)
      rdev->mc.igp_sideport_enabled = radeon_atombios_sideport_present(rdev);

   return 0;
}

/* We doesn't check that the GPU really needs a reset we simply do the
 * reset, it's up to the caller to determine if the GPU needs one. We
 * might add an helper function to check that.
 */
int r600_gpu_soft_reset(struct radeon_device *rdev)
{
   struct rv515_mc_save save;
   u32 grbm_busy_mask = S_008010_VC_BUSY(1) | S_008010_VGT_BUSY_NO_DMA(1) |
            S_008010_VGT_BUSY(1) | S_008010_TA03_BUSY(1) |
            S_008010_TC_BUSY(1) | S_008010_SX_BUSY(1) |
            S_008010_SH_BUSY(1) | S_008010_SPI03_BUSY(1) |
            S_008010_SMX_BUSY(1) | S_008010_SC_BUSY(1) |
            S_008010_PA_BUSY(1) | S_008010_DB03_BUSY(1) |
            S_008010_CR_BUSY(1) | S_008010_CB03_BUSY(1) |
            S_008010_GUI_ACTIVE(1);
   u32 grbm2_busy_mask = S_008014_SPI0_BUSY(1) | S_008014_SPI1_BUSY(1) |
         S_008014_SPI2_BUSY(1) | S_008014_SPI3_BUSY(1) |
         S_008014_TA0_BUSY(1) | S_008014_TA1_BUSY(1) |
         S_008014_TA2_BUSY(1) | S_008014_TA3_BUSY(1) |
         S_008014_DB0_BUSY(1) | S_008014_DB1_BUSY(1) |
         S_008014_DB2_BUSY(1) | S_008014_DB3_BUSY(1) |
         S_008014_CB0_BUSY(1) | S_008014_CB1_BUSY(1) |
         S_008014_CB2_BUSY(1) | S_008014_CB3_BUSY(1);
   u32 srbm_reset = 0;
   u32 tmp;

   dev_info(rdev->dev, "GPU softreset \n");
   dev_info(rdev->dev, "  R_008010_GRBM_STATUS=0x%08X\n",
      RREG32(R_008010_GRBM_STATUS));
   dev_info(rdev->dev, "  R_008014_GRBM_STATUS2=0x%08X\n",
      RREG32(R_008014_GRBM_STATUS2));
   dev_info(rdev->dev, "  R_000E50_SRBM_STATUS=0x%08X\n",
      RREG32(R_000E50_SRBM_STATUS));
   rv515_mc_stop(rdev, &save);
   if (r600_mc_wait_for_idle(rdev)) {
      dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
   }
   /* Disable CP parsing/prefetching */
   WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(0xff));
   /* Check if any of the rendering block is busy and reset it */
   if ((RREG32(R_008010_GRBM_STATUS) & grbm_busy_mask) ||
       (RREG32(R_008014_GRBM_STATUS2) & grbm2_busy_mask)) {
      tmp = S_008020_SOFT_RESET_CR(1) |
         S_008020_SOFT_RESET_DB(1) |
         S_008020_SOFT_RESET_CB(1) |
         S_008020_SOFT_RESET_PA(1) |
         S_008020_SOFT_RESET_SC(1) |
         S_008020_SOFT_RESET_SMX(1) |
         S_008020_SOFT_RESET_SPI(1) |
         S_008020_SOFT_RESET_SX(1) |
         S_008020_SOFT_RESET_SH(1) |
         S_008020_SOFT_RESET_TC(1) |
         S_008020_SOFT_RESET_TA(1) |
         S_008020_SOFT_RESET_VC(1) |
         S_008020_SOFT_RESET_VGT(1);
      dev_info(rdev->dev, "  R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp);
      WREG32(R_008020_GRBM_SOFT_RESET, tmp);
      (void)RREG32(R_008020_GRBM_SOFT_RESET);
      udelay(50);
      WREG32(R_008020_GRBM_SOFT_RESET, 0);
      (void)RREG32(R_008020_GRBM_SOFT_RESET);
   }
   /* Reset CP (we always reset CP) */
   tmp = S_008020_SOFT_RESET_CP(1);
   dev_info(rdev->dev, "R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp);
   WREG32(R_008020_GRBM_SOFT_RESET, tmp);
   (void)RREG32(R_008020_GRBM_SOFT_RESET);
   udelay(50);
   WREG32(R_008020_GRBM_SOFT_RESET, 0);
   (void)RREG32(R_008020_GRBM_SOFT_RESET);
   /* Reset others GPU block if necessary */
   if (G_000E50_RLC_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_RLC(1);
   if (G_000E50_GRBM_RQ_PENDING(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_GRBM(1);
   if (G_000E50_HI_RQ_PENDING(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_IH(1);
   if (G_000E50_VMC_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_VMC(1);
   if (G_000E50_MCB_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_MC(1);
   if (G_000E50_MCDZ_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_MC(1);
   if (G_000E50_MCDY_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_MC(1);
   if (G_000E50_MCDX_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_MC(1);
   if (G_000E50_MCDW_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_MC(1);
   if (G_000E50_RLC_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_RLC(1);
   if (G_000E50_SEM_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_SEM(1);
   if (G_000E50_BIF_BUSY(RREG32(R_000E50_SRBM_STATUS)))
      srbm_reset |= S_000E60_SOFT_RESET_BIF(1);
   dev_info(rdev->dev, "  R_000E60_SRBM_SOFT_RESET=0x%08X\n", srbm_reset);
   WREG32(R_000E60_SRBM_SOFT_RESET, srbm_reset);
   (void)RREG32(R_000E60_SRBM_SOFT_RESET);
   udelay(50);
   WREG32(R_000E60_SRBM_SOFT_RESET, 0);
   (void)RREG32(R_000E60_SRBM_SOFT_RESET);
   WREG32(R_000E60_SRBM_SOFT_RESET, srbm_reset);
   (void)RREG32(R_000E60_SRBM_SOFT_RESET);
   udelay(50);
   WREG32(R_000E60_SRBM_SOFT_RESET, 0);
   (void)RREG32(R_000E60_SRBM_SOFT_RESET);
   /* Wait a little for things to settle down */
   udelay(50);
   dev_info(rdev->dev, "  R_008010_GRBM_STATUS=0x%08X\n",
      RREG32(R_008010_GRBM_STATUS));
   dev_info(rdev->dev, "  R_008014_GRBM_STATUS2=0x%08X\n",
      RREG32(R_008014_GRBM_STATUS2));
   dev_info(rdev->dev, "  R_000E50_SRBM_STATUS=0x%08X\n",
      RREG32(R_000E50_SRBM_STATUS));
   /* After reset we need to reinit the asic as GPU often endup in an
    * incoherent state.
    */
   atom_asic_init(rdev->mode_info.atom_context);
   rv515_mc_resume(rdev, &save);
   return 0;
}

int r600_gpu_reset(struct radeon_device *rdev)
{
   return r600_gpu_soft_reset(rdev);
}

static u32 r600_get_tile_pipe_to_backend_map(u32 num_tile_pipes,
                    u32 num_backends,
                    u32 backend_disable_mask)
{
   u32 backend_map = 0;
   u32 enabled_backends_mask;
   u32 enabled_backends_count;
   u32 cur_pipe;
   u32 swizzle_pipe[R6XX_MAX_PIPES];
   u32 cur_backend;
   u32 i;

   if (num_tile_pipes > R6XX_MAX_PIPES)
      num_tile_pipes = R6XX_MAX_PIPES;
   if (num_tile_pipes < 1)
      num_tile_pipes = 1;
   if (num_backends > R6XX_MAX_BACKENDS)
      num_backends = R6XX_MAX_BACKENDS;
   if (num_backends < 1)
      num_backends = 1;

   enabled_backends_mask = 0;
   enabled_backends_count = 0;
   for (i = 0; i < R6XX_MAX_BACKENDS; ++i) {
      if (((backend_disable_mask >> i) & 1) == 0) {
         enabled_backends_mask |= (1 << i);
         ++enabled_backends_count;
      }
      if (enabled_backends_count == num_backends)
         break;
   }

   if (enabled_backends_count == 0) {
      enabled_backends_mask = 1;
      enabled_backends_count = 1;
   }

   if (enabled_backends_count != num_backends)
      num_backends = enabled_backends_count;

   memset((uint8_t *)&swizzle_pipe[0], 0, sizeof(u32) * R6XX_MAX_PIPES);
   switch (num_tile_pipes) {
   case 1:
      swizzle_pipe[0] = 0;
      break;
   case 2:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 1;
      break;
   case 3:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 1;
      swizzle_pipe[2] = 2;
      break;
   case 4:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 1;
      swizzle_pipe[2] = 2;
      swizzle_pipe[3] = 3;
      break;
   case 5:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 1;
      swizzle_pipe[2] = 2;
      swizzle_pipe[3] = 3;
      swizzle_pipe[4] = 4;
      break;
   case 6:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 2;
      swizzle_pipe[2] = 4;
      swizzle_pipe[3] = 5;
      swizzle_pipe[4] = 1;
      swizzle_pipe[5] = 3;
      break;
   case 7:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 2;
      swizzle_pipe[2] = 4;
      swizzle_pipe[3] = 6;
      swizzle_pipe[4] = 1;
      swizzle_pipe[5] = 3;
      swizzle_pipe[6] = 5;
      break;
   case 8:
      swizzle_pipe[0] = 0;
      swizzle_pipe[1] = 2;
      swizzle_pipe[2] = 4;
      swizzle_pipe[3] = 6;
      swizzle_pipe[4] = 1;
      swizzle_pipe[5] = 3;
      swizzle_pipe[6] = 5;
      swizzle_pipe[7] = 7;
      break;
   }

   cur_backend = 0;
   for (cur_pipe = 0; cur_pipe < num_tile_pipes; ++cur_pipe) {
      while (((1 << cur_backend) & enabled_backends_mask) == 0)
         cur_backend = (cur_backend + 1) % R6XX_MAX_BACKENDS;

      backend_map |= (u32)(((cur_backend & 3) << (swizzle_pipe[cur_pipe] * 2)));

      cur_backend = (cur_backend + 1) % R6XX_MAX_BACKENDS;
   }

   return backend_map;
}

int r600_count_pipe_bits(uint32_t val)
{
   int i, ret = 0;

   for (i = 0; i < 32; i++) {
      ret += val & 1;
      val >>= 1;
   }
   return ret;
}

void r600_gpu_init(struct radeon_device *rdev)
{
   u32 tiling_config;
   u32 ramcfg;
   u32 backend_map;
   u32 cc_rb_backend_disable;
   u32 cc_gc_shader_pipe_config;
   u32 tmp;
   int i, j;
   u32 sq_config;
   u32 sq_gpr_resource_mgmt_1 = 0;
   u32 sq_gpr_resource_mgmt_2 = 0;
   u32 sq_thread_resource_mgmt = 0;
   u32 sq_stack_resource_mgmt_1 = 0;
   u32 sq_stack_resource_mgmt_2 = 0;

   /* FIXME: implement */
   switch (rdev->family) {
   case CHIP_R600:
      rdev->config.r600.max_pipes = 4;
      rdev->config.r600.max_tile_pipes = 8;
      rdev->config.r600.max_simds = 4;
      rdev->config.r600.max_backends = 4;
      rdev->config.r600.max_gprs = 256;
      rdev->config.r600.max_threads = 192;
      rdev->config.r600.max_stack_entries = 256;
      rdev->config.r600.max_hw_contexts = 8;
      rdev->config.r600.max_gs_threads = 16;
      rdev->config.r600.sx_max_export_size = 128;
      rdev->config.r600.sx_max_export_pos_size = 16;
      rdev->config.r600.sx_max_export_smx_size = 128;
      rdev->config.r600.sq_num_cf_insts = 2;
      break;
   case CHIP_RV630:
   case CHIP_RV635:
      rdev->config.r600.max_pipes = 2;
      rdev->config.r600.max_tile_pipes = 2;
      rdev->config.r600.max_simds = 3;
      rdev->config.r600.max_backends = 1;
      rdev->config.r600.max_gprs = 128;
      rdev->config.r600.max_threads = 192;
      rdev->config.r600.max_stack_entries = 128;
      rdev->config.r600.max_hw_contexts = 8;
      rdev->config.r600.max_gs_threads = 4;
      rdev->config.r600.sx_max_export_size = 128;
      rdev->config.r600.sx_max_export_pos_size = 16;
      rdev->config.r600.sx_max_export_smx_size = 128;
      rdev->config.r600.sq_num_cf_insts = 2;
      break;
   case CHIP_RV610:
   case CHIP_RV620:
   case CHIP_RS780:
   case CHIP_RS880:
      rdev->config.r600.max_pipes = 1;
      rdev->config.r600.max_tile_pipes = 1;
      rdev->config.r600.max_simds = 2;
      rdev->config.r600.max_backends = 1;
      rdev->config.r600.max_gprs = 128;
      rdev->config.r600.max_threads = 192;
      rdev->config.r600.max_stack_entries = 128;
      rdev->config.r600.max_hw_contexts = 4;
      rdev->config.r600.max_gs_threads = 4;
      rdev->config.r600.sx_max_export_size = 128;
      rdev->config.r600.sx_max_export_pos_size = 16;
      rdev->config.r600.sx_max_export_smx_size = 128;
      rdev->config.r600.sq_num_cf_insts = 1;
      break;
   case CHIP_RV670:
      rdev->config.r600.max_pipes = 4;
      rdev->config.r600.max_tile_pipes = 4;
      rdev->config.r600.max_simds = 4;
      rdev->config.r600.max_backends = 4;
      rdev->config.r600.max_gprs = 192;
      rdev->config.r600.max_threads = 192;
      rdev->config.r600.max_stack_entries = 256;
      rdev->config.r600.max_hw_contexts = 8;
      rdev->config.r600.max_gs_threads = 16;
      rdev->config.r600.sx_max_export_size = 128;
      rdev->config.r600.sx_max_export_pos_size = 16;
      rdev->config.r600.sx_max_export_smx_size = 128;
      rdev->config.r600.sq_num_cf_insts = 2;
      break;
   default:
      break;
   }

   /* Initialize HDP */
   for (i = 0, j = 0; i < 32; i++, j += 0x18) {
      WREG32((0x2c14 + j), 0x00000000);
      WREG32((0x2c18 + j), 0x00000000);
      WREG32((0x2c1c + j), 0x00000000);
      WREG32((0x2c20 + j), 0x00000000);
      WREG32((0x2c24 + j), 0x00000000);
   }

   WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));

   /* Setup tiling */
   tiling_config = 0;
   ramcfg = RREG32(RAMCFG);
   switch (rdev->config.r600.max_tile_pipes) {
   case 1:
      tiling_config |= PIPE_TILING(0);
      break;
   case 2:
      tiling_config |= PIPE_TILING(1);
      break;
   case 4:
      tiling_config |= PIPE_TILING(2);
      break;
   case 8:
      tiling_config |= PIPE_TILING(3);
      break;
   default:
      break;
   }
   tiling_config |= BANK_TILING((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT);
   tiling_config |= GROUP_SIZE(0);
   tmp = (ramcfg & NOOFROWS_MASK) >> NOOFROWS_SHIFT;
   if (tmp > 3) {
      tiling_config |= ROW_TILING(3);
      tiling_config |= SAMPLE_SPLIT(3);
   } else {
      tiling_config |= ROW_TILING(tmp);
      tiling_config |= SAMPLE_SPLIT(tmp);
   }
   tiling_config |= BANK_SWAPS(1);

   cc_rb_backend_disable = RREG32(CC_RB_BACKEND_DISABLE) & 0x00ff0000;
   cc_rb_backend_disable |=
      BACKEND_DISABLE((R6XX_MAX_BACKENDS_MASK << rdev->config.r600.max_backends) & R6XX_MAX_BACKENDS_MASK);

   cc_gc_shader_pipe_config = RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffffff00;
   cc_gc_shader_pipe_config |=
      INACTIVE_QD_PIPES((R6XX_MAX_PIPES_MASK << rdev->config.r600.max_pipes) & R6XX_MAX_PIPES_MASK);
   cc_gc_shader_pipe_config |=
      INACTIVE_SIMDS((R6XX_MAX_SIMDS_MASK << rdev->config.r600.max_simds) & R6XX_MAX_SIMDS_MASK);

   backend_map = r600_get_tile_pipe_to_backend_map(rdev->config.r600.max_tile_pipes,
                     (R6XX_MAX_BACKENDS -
                      r600_count_pipe_bits((cc_rb_backend_disable &
                                  R6XX_MAX_BACKENDS_MASK) >> 16)),
                     (cc_rb_backend_disable >> 16));

   tiling_config |= BACKEND_MAP(backend_map);
   WREG32(GB_TILING_CONFIG, tiling_config);
   WREG32(DCP_TILING_CONFIG, tiling_config & 0xffff);
   WREG32(HDP_TILING_CONFIG, tiling_config & 0xffff);

   /* Setup pipes */
   WREG32(CC_RB_BACKEND_DISABLE, cc_rb_backend_disable);
   WREG32(CC_GC_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config);

   tmp = R6XX_MAX_PIPES - r600_count_pipe_bits((cc_gc_shader_pipe_config & INACTIVE_QD_PIPES_MASK) >> 8);
   WREG32(VGT_OUT_DEALLOC_CNTL, (tmp * 4) & DEALLOC_DIST_MASK);
   WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, ((tmp * 4) - 2) & VTX_REUSE_DEPTH_MASK);

   /* Setup some CP states */
   WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b)));
   WREG32(CP_MEQ_THRESHOLDS, (MEQ_END(0x40) | ROQ_END(0x40)));

   WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO | SYNC_GRADIENT |
              SYNC_WALKER | SYNC_ALIGNER));
   /* Setup various GPU states */
   if (rdev->family == CHIP_RV670)
      WREG32(ARB_GDEC_RD_CNTL, 0x00000021);

   tmp = RREG32(SX_DEBUG_1);
   tmp |= SMX_EVENT_RELEASE;
   if ((rdev->family > CHIP_R600))
      tmp |= ENABLE_NEW_SMX_ADDRESS;
   WREG32(SX_DEBUG_1, tmp);

   if (((rdev->family) == CHIP_R600) ||
       ((rdev->family) == CHIP_RV630) ||
       ((rdev->family) == CHIP_RV610) ||
       ((rdev->family) == CHIP_RV620) ||
       ((rdev->family) == CHIP_RS780) ||
       ((rdev->family) == CHIP_RS880)) {
      WREG32(DB_DEBUG, PREZ_MUST_WAIT_FOR_POSTZ_DONE);
   } else {
      WREG32(DB_DEBUG, 0);
   }
   WREG32(DB_WATERMARKS, (DEPTH_FREE(4) | DEPTH_CACHELINE_FREE(16) |
                DEPTH_FLUSH(16) | DEPTH_PENDING_FREE(4)));

   WREG32(PA_SC_MULTI_CHIP_CNTL, 0);
   WREG32(VGT_NUM_INSTANCES, 0);

   WREG32(SPI_CONFIG_CNTL, GPR_WRITE_PRIORITY(0));
   WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(0));

   tmp = RREG32(SQ_MS_FIFO_SIZES);
   if (((rdev->family) == CHIP_RV610) ||
       ((rdev->family) == CHIP_RV620) ||
       ((rdev->family) == CHIP_RS780) ||
       ((rdev->family) == CHIP_RS880)) {
      tmp = (CACHE_FIFO_SIZE(0xa) |
             FETCH_FIFO_HIWATER(0xa) |
             DONE_FIFO_HIWATER(0xe0) |
             ALU_UPDATE_FIFO_HIWATER(0x8));
   } else if (((rdev->family) == CHIP_R600) ||
         ((rdev->family) == CHIP_RV630)) {
      tmp &= ~DONE_FIFO_HIWATER(0xff);
      tmp |= DONE_FIFO_HIWATER(0x4);
   }
   WREG32(SQ_MS_FIFO_SIZES, tmp);

   /* SQ_CONFIG, SQ_GPR_RESOURCE_MGMT, SQ_THREAD_RESOURCE_MGMT, SQ_STACK_RESOURCE_MGMT
    * should be adjusted as needed by the 2D/3D drivers.  This just sets default values
    */
   sq_config = RREG32(SQ_CONFIG);
   sq_config &= ~(PS_PRIO(3) |
             VS_PRIO(3) |
             GS_PRIO(3) |
             ES_PRIO(3));
   sq_config |= (DX9_CONSTS |
            VC_ENABLE |
            PS_PRIO(0) |
            VS_PRIO(1) |
            GS_PRIO(2) |
            ES_PRIO(3));

   if ((rdev->family) == CHIP_R600) {
      sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(124) |
                 NUM_VS_GPRS(124) |
                 NUM_CLAUSE_TEMP_GPRS(4));
      sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(0) |
                 NUM_ES_GPRS(0));
      sq_thread_resource_mgmt = (NUM_PS_THREADS(136) |
                  NUM_VS_THREADS(48) |
                  NUM_GS_THREADS(4) |
                  NUM_ES_THREADS(4));
      sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(128) |
                   NUM_VS_STACK_ENTRIES(128));
      sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(0) |
                   NUM_ES_STACK_ENTRIES(0));
   } else if (((rdev->family) == CHIP_RV610) ||
         ((rdev->family) == CHIP_RV620) ||
         ((rdev->family) == CHIP_RS780) ||
         ((rdev->family) == CHIP_RS880)) {
      /* no vertex cache */
      sq_config &= ~VC_ENABLE;

      sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) |
                 NUM_VS_GPRS(44) |
                 NUM_CLAUSE_TEMP_GPRS(2));
      sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) |
                 NUM_ES_GPRS(17));
      sq_thread_resource_mgmt = (NUM_PS_THREADS(79) |
                  NUM_VS_THREADS(78) |
                  NUM_GS_THREADS(4) |
                  NUM_ES_THREADS(31));
      sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) |
                   NUM_VS_STACK_ENTRIES(40));
      sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) |
                   NUM_ES_STACK_ENTRIES(16));
   } else if (((rdev->family) == CHIP_RV630) ||
         ((rdev->family) == CHIP_RV635)) {
      sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) |
                 NUM_VS_GPRS(44) |
                 NUM_CLAUSE_TEMP_GPRS(2));
      sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(18) |
                 NUM_ES_GPRS(18));
      sq_thread_resource_mgmt = (NUM_PS_THREADS(79) |
                  NUM_VS_THREADS(78) |
                  NUM_GS_THREADS(4) |
                  NUM_ES_THREADS(31));
      sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) |
                   NUM_VS_STACK_ENTRIES(40));
      sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) |
                   NUM_ES_STACK_ENTRIES(16));
   } else if ((rdev->family) == CHIP_RV670) {
      sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) |
                 NUM_VS_GPRS(44) |
                 NUM_CLAUSE_TEMP_GPRS(2));
      sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) |
                 NUM_ES_GPRS(17));
      sq_thread_resource_mgmt = (NUM_PS_THREADS(79) |
                  NUM_VS_THREADS(78) |
                  NUM_GS_THREADS(4) |
                  NUM_ES_THREADS(31));
      sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(64) |
                   NUM_VS_STACK_ENTRIES(64));
      sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(64) |
                   NUM_ES_STACK_ENTRIES(64));
   }

   WREG32(SQ_CONFIG, sq_config);
   WREG32(SQ_GPR_RESOURCE_MGMT_1,  sq_gpr_resource_mgmt_1);
   WREG32(SQ_GPR_RESOURCE_MGMT_2,  sq_gpr_resource_mgmt_2);
   WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt);
   WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1);
   WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2);

   if (((rdev->family) == CHIP_RV610) ||
       ((rdev->family) == CHIP_RV620) ||
       ((rdev->family) == CHIP_RS780) ||
       ((rdev->family) == CHIP_RS880)) {
      WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(TC_ONLY));
   } else {
      WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC));
   }

   /* More default values. 2D/3D driver should adjust as needed */
   WREG32(PA_SC_AA_SAMPLE_LOCS_2S, (S0_X(0xc) | S0_Y(0x4) |
                S1_X(0x4) | S1_Y(0xc)));
   WREG32(PA_SC_AA_SAMPLE_LOCS_4S, (S0_X(0xe) | S0_Y(0xe) |
                S1_X(0x2) | S1_Y(0x2) |
                S2_X(0xa) | S2_Y(0x6) |
                S3_X(0x6) | S3_Y(0xa)));
   WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD0, (S0_X(0xe) | S0_Y(0xb) |
                    S1_X(0x4) | S1_Y(0xc) |
                    S2_X(0x1) | S2_Y(0x6) |
                    S3_X(0xa) | S3_Y(0xe)));
   WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD1, (S4_X(0x6) | S4_Y(0x1) |
                    S5_X(0x0) | S5_Y(0x0) |
                    S6_X(0xb) | S6_Y(0x4) |
                    S7_X(0x7) | S7_Y(0x8)));

   WREG32(VGT_STRMOUT_EN, 0);
   tmp = rdev->config.r600.max_pipes * 16;
   switch (rdev->family) {
   case CHIP_RV610:
   case CHIP_RV620:
   case CHIP_RS780:
   case CHIP_RS880:
      tmp += 32;
      break;
   case CHIP_RV670:
      tmp += 128;
      break;
   default:
      break;
   }
   if (tmp > 256) {
      tmp = 256;
   }
   WREG32(VGT_ES_PER_GS, 128);
   WREG32(VGT_GS_PER_ES, tmp);
   WREG32(VGT_GS_PER_VS, 2);
   WREG32(VGT_GS_VERTEX_REUSE, 16);

   /* more default values. 2D/3D driver should adjust as needed */
   WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
   WREG32(VGT_STRMOUT_EN, 0);
   WREG32(SX_MISC, 0);
   WREG32(PA_SC_MODE_CNTL, 0);
   WREG32(PA_SC_AA_CONFIG, 0);
   WREG32(PA_SC_LINE_STIPPLE, 0);
   WREG32(SPI_INPUT_Z, 0);
   WREG32(SPI_PS_IN_CONTROL_0, NUM_INTERP(2));
   WREG32(CB_COLOR7_FRAG, 0);

   /* Clear render buffer base addresses */
   WREG32(CB_COLOR0_BASE, 0);
   WREG32(CB_COLOR1_BASE, 0);
   WREG32(CB_COLOR2_BASE, 0);
   WREG32(CB_COLOR3_BASE, 0);
   WREG32(CB_COLOR4_BASE, 0);
   WREG32(CB_COLOR5_BASE, 0);
   WREG32(CB_COLOR6_BASE, 0);
   WREG32(CB_COLOR7_BASE, 0);
   WREG32(CB_COLOR7_FRAG, 0);

   switch (rdev->family) {
   case CHIP_RV610:
   case CHIP_RV620:
   case CHIP_RS780:
   case CHIP_RS880:
      tmp = TC_L2_SIZE(8);
      break;
   case CHIP_RV630:
   case CHIP_RV635:
      tmp = TC_L2_SIZE(4);
      break;
   case CHIP_R600:
      tmp = TC_L2_SIZE(0) | L2_DISABLE_LATE_HIT;
      break;
   default:
      tmp = TC_L2_SIZE(0);
      break;
   }
   WREG32(TC_CNTL, tmp);

   tmp = RREG32(HDP_HOST_PATH_CNTL);
   WREG32(HDP_HOST_PATH_CNTL, tmp);

   tmp = RREG32(ARB_POP);
   tmp |= ENABLE_TC128;
   WREG32(ARB_POP, tmp);

   WREG32(PA_SC_MULTI_CHIP_CNTL, 0);
   WREG32(PA_CL_ENHANCE, (CLIP_VTX_REORDER_ENA |
                NUM_CLIP_SEQ(3)));
   WREG32(PA_SC_ENHANCE, FORCE_EOV_MAX_CLK_CNT(4095));
}


/*
 * Indirect registers accessor
 */
u32 r600_pciep_rreg(struct radeon_device *rdev, u32 reg)
{
   u32 r;

   WREG32(PCIE_PORT_INDEX, ((reg) & 0xff));
   (void)RREG32(PCIE_PORT_INDEX);
   r = RREG32(PCIE_PORT_DATA);
   return r;
}

void r600_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
   WREG32(PCIE_PORT_INDEX, ((reg) & 0xff));
   (void)RREG32(PCIE_PORT_INDEX);
   WREG32(PCIE_PORT_DATA, (v));
   (void)RREG32(PCIE_PORT_DATA);
}

/*
 * CP & Ring
 */
void r600_cp_stop(struct radeon_device *rdev)
{
   WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1));
}

int r600_init_microcode(struct radeon_device *rdev)
{
   struct platform_device *pdev;
   const char *chip_name;
   const char *rlc_chip_name;
   size_t pfp_req_size, me_req_size, rlc_req_size;
   char fw_name[30];
   int err;

   DRM_DEBUG("\n");

   pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0);
   err = IS_ERR(pdev);
   if (err) {
      printk(KERN_ERR "radeon_cp: Failed to register firmware\n");
      return -EINVAL;
   }

   switch (rdev->family) {
   case CHIP_R600:
      chip_name = "R600";
      rlc_chip_name = "R600";
      break;
   case CHIP_RV610:
      chip_name = "RV610";
      rlc_chip_name = "R600";
      break;
   case CHIP_RV630:
      chip_name = "RV630";
      rlc_chip_name = "R600";
      break;
   case CHIP_RV620:
      chip_name = "RV620";
      rlc_chip_name = "R600";
      break;
   case CHIP_RV635:
      chip_name = "RV635";
      rlc_chip_name = "R600";
      break;
   case CHIP_RV670:
      chip_name = "RV670";
      rlc_chip_name = "R600";
      break;
   case CHIP_RS780:
   case CHIP_RS880:
      chip_name = "RS780";
      rlc_chip_name = "R600";
      break;
   case CHIP_RV770:
      chip_name = "RV770";
      rlc_chip_name = "R700";
      break;
   case CHIP_RV730:
   case CHIP_RV740:
      chip_name = "RV730";
      rlc_chip_name = "R700";
      break;
   case CHIP_RV710:
      chip_name = "RV710";
      rlc_chip_name = "R700";
      break;
   default: BUG();
   }

   if (rdev->family >= CHIP_RV770) {
      pfp_req_size = R700_PFP_UCODE_SIZE * 4;
      me_req_size = R700_PM4_UCODE_SIZE * 4;
      rlc_req_size = R700_RLC_UCODE_SIZE * 4;
   } else {
      pfp_req_size = PFP_UCODE_SIZE * 4;
      me_req_size = PM4_UCODE_SIZE * 12;
      rlc_req_size = RLC_UCODE_SIZE * 4;
   }

   DRM_INFO("Loading %s Microcode\n", chip_name);

   snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
   err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev);
   if (err)
      goto out;
   if (rdev->pfp_fw->size != pfp_req_size) {
      printk(KERN_ERR
             "r600_cp: Bogus length %zu in firmware \"%s\"\n",
             rdev->pfp_fw->size, fw_name);
      err = -EINVAL;
      goto out;
   }

   snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
   err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev);
   if (err)
      goto out;
   if (rdev->me_fw->size != me_req_size) {
      printk(KERN_ERR
             "r600_cp: Bogus length %zu in firmware \"%s\"\n",
             rdev->me_fw->size, fw_name);
      err = -EINVAL;
   }

   snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", rlc_chip_name);
   err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev);
   if (err)
      goto out;
   if (rdev->rlc_fw->size != rlc_req_size) {
      printk(KERN_ERR
             "r600_rlc: Bogus length %zu in firmware \"%s\"\n",
             rdev->rlc_fw->size, fw_name);
      err = -EINVAL;
   }

out:
   platform_device_unregister(pdev);

   if (err) {
      if (err != -EINVAL)
         printk(KERN_ERR
                "r600_cp: Failed to load firmware \"%s\"\n",
                fw_name);
      release_firmware(rdev->pfp_fw);
      rdev->pfp_fw = NULL;
      release_firmware(rdev->me_fw);
      rdev->me_fw = NULL;
      release_firmware(rdev->rlc_fw);
      rdev->rlc_fw = NULL;
   }
   return err;
}

static int r600_cp_load_microcode(struct radeon_device *rdev)
{
   const __be32 *fw_data;
   int i;

   if (!rdev->me_fw || !rdev->pfp_fw)
      return -EINVAL;

   r600_cp_stop(rdev);

   WREG32(CP_RB_CNTL, RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3));

   /* Reset cp */
   WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
   RREG32(GRBM_SOFT_RESET);
   mdelay(15);
   WREG32(GRBM_SOFT_RESET, 0);

   WREG32(CP_ME_RAM_WADDR, 0);

   fw_data = (const __be32 *)rdev->me_fw->data;
   WREG32(CP_ME_RAM_WADDR, 0);
   for (i = 0; i < PM4_UCODE_SIZE * 3; i++)
      WREG32(CP_ME_RAM_DATA,
             be32_to_cpup(fw_data++));

   fw_data = (const __be32 *)rdev->pfp_fw->data;
   WREG32(CP_PFP_UCODE_ADDR, 0);
   for (i = 0; i < PFP_UCODE_SIZE; i++)
      WREG32(CP_PFP_UCODE_DATA,
             be32_to_cpup(fw_data++));

   WREG32(CP_PFP_UCODE_ADDR, 0);
   WREG32(CP_ME_RAM_WADDR, 0);
   WREG32(CP_ME_RAM_RADDR, 0);
   return 0;
}

int r600_cp_start(struct radeon_device *rdev)
{
   int r;
   uint32_t cp_me;

   r = radeon_ring_lock(rdev, 7);
   if (r) {
      DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
      return r;
   }
   radeon_ring_write(rdev, PACKET3(PACKET3_ME_INITIALIZE, 5));
   radeon_ring_write(rdev, 0x1);
   if (rdev->family < CHIP_RV770) {
      radeon_ring_write(rdev, 0x3);
      radeon_ring_write(rdev, rdev->config.r600.max_hw_contexts - 1);
   } else {
      radeon_ring_write(rdev, 0x0);
      radeon_ring_write(rdev, rdev->config.rv770.max_hw_contexts - 1);
   }
   radeon_ring_write(rdev, PACKET3_ME_INITIALIZE_DEVICE_ID(1));
   radeon_ring_write(rdev, 0);
   radeon_ring_write(rdev, 0);
   radeon_ring_unlock_commit(rdev);

   cp_me = 0xff;
   WREG32(R_0086D8_CP_ME_CNTL, cp_me);
   return 0;
}

int r600_cp_resume(struct radeon_device *rdev)
{
   u32 tmp;
   u32 rb_bufsz;
   int r;

   /* Reset cp */
   WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
   RREG32(GRBM_SOFT_RESET);
   mdelay(15);
   WREG32(GRBM_SOFT_RESET, 0);

   /* Set ring buffer size */
   rb_bufsz = drm_order(rdev->cp.ring_size / 8);
   tmp = RB_NO_UPDATE | (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
   tmp |= BUF_SWAP_32BIT;
#endif
   WREG32(CP_RB_CNTL, tmp);
   WREG32(CP_SEM_WAIT_TIMER, 0x4);

   /* Set the write pointer delay */
   WREG32(CP_RB_WPTR_DELAY, 0);

   /* Initialize the ring buffer's read and write pointers */
   WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA);
   WREG32(CP_RB_RPTR_WR, 0);
   WREG32(CP_RB_WPTR, 0);
   WREG32(CP_RB_RPTR_ADDR, rdev->cp.gpu_addr & 0xFFFFFFFF);
   WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->cp.gpu_addr));
   mdelay(1);
   WREG32(CP_RB_CNTL, tmp);

   WREG32(CP_RB_BASE, rdev->cp.gpu_addr >> 8);
   WREG32(CP_DEBUG, (1 << 27) | (1 << 28));

   rdev->cp.rptr = RREG32(CP_RB_RPTR);
   rdev->cp.wptr = RREG32(CP_RB_WPTR);

   r600_cp_start(rdev);
   rdev->cp.ready = true;
   r = radeon_ring_test(rdev);
   if (r) {
      rdev->cp.ready = false;
      return r;
   }
   return 0;
}

void r600_cp_commit(struct radeon_device *rdev)
{
   WREG32(CP_RB_WPTR, rdev->cp.wptr);
   (void)RREG32(CP_RB_WPTR);
}

void r600_ring_init(struct radeon_device *rdev, unsigned ring_size)
{
   u32 rb_bufsz;

   /* Align ring size */
   rb_bufsz = drm_order(ring_size / 8);
   ring_size = (1 << (rb_bufsz + 1)) * 4;
   rdev->cp.ring_size = ring_size;
   rdev->cp.align_mask = 16 - 1;
}

void r600_cp_fini(struct radeon_device *rdev)
{
   r600_cp_stop(rdev);
   radeon_ring_fini(rdev);
}


/*
 * GPU scratch registers helpers function.
 */
void r600_scratch_init(struct radeon_device *rdev)
{
   int i;

   rdev->scratch.num_reg = 7;
   for (i = 0; i < rdev->scratch.num_reg; i++) {
      rdev->scratch.free = true;
      rdev->scratch.reg = SCRATCH_REG0 + (i * 4);
   }
}

int r600_ring_test(struct radeon_device *rdev)
{
   uint32_t scratch;
   uint32_t tmp = 0;
   unsigned i;
   int r;

   r = radeon_scratch_get(rdev, &scratch);
   if (r) {
      DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
      return r;
   }
   WREG32(scratch, 0xCAFEDEAD);
   r = radeon_ring_lock(rdev, 3);
   if (r) {
      DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
      radeon_scratch_free(rdev, scratch);
      return r;
   }
   radeon_ring_write(rdev, PACKET3(PACKET3_SET_CONFIG_REG, 1));
   radeon_ring_write(rdev, ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2));
   radeon_ring_write(rdev, 0xDEADBEEF);
   radeon_ring_unlock_commit(rdev);
   for (i = 0; i < rdev->usec_timeout; i++) {
      tmp = RREG32(scratch);
      if (tmp == 0xDEADBEEF)
         break;
      DRM_UDELAY(1);
   }
   if (i < rdev->usec_timeout) {
      DRM_INFO("ring test succeeded in %d usecs\n", i);
   } else {
      DRM_ERROR("radeon: ring test failed (scratch(0x%04X)=0x%08X)\n",
           scratch, tmp);
      r = -EINVAL;
   }
   radeon_scratch_free(rdev, scratch);
   return r;
}

void r600_wb_disable(struct radeon_device *rdev)
{
   int r;

   WREG32(SCRATCH_UMSK, 0);
   if (rdev->wb.wb_obj) {
      r = radeon_bo_reserve(rdev->wb.wb_obj, false);
      if (unlikely(r != 0))
         return;
      radeon_bo_kunmap(rdev->wb.wb_obj);
      radeon_bo_unpin(rdev->wb.wb_obj);
      radeon_bo_unreserve(rdev->wb.wb_obj);
   }
}

void r600_wb_fini(struct radeon_device *rdev)
{
   r600_wb_disable(rdev);
   if (rdev->wb.wb_obj) {
      radeon_bo_unref(&rdev->wb.wb_obj);
      rdev->wb.wb = NULL;
      rdev->wb.wb_obj = NULL;
   }
}

int r600_wb_enable(struct radeon_device *rdev)
{
   int r;

   if (rdev->wb.wb_obj == NULL) {
      r = radeon_bo_create(rdev, NULL, RADEON_GPU_PAGE_SIZE, true,
            RADEON_GEM_DOMAIN_GTT, &rdev->wb.wb_obj);
      if (r) {
         dev_warn(rdev->dev, "(%d) create WB bo failed\n", r);
         return r;
      }
      r = radeon_bo_reserve(rdev->wb.wb_obj, false);
      if (unlikely(r != 0)) {
         r600_wb_fini(rdev);
         return r;
      }
      r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT,
            &rdev->wb.gpu_addr);
      if (r) {
         radeon_bo_unreserve(rdev->wb.wb_obj);
         dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r);
         r600_wb_fini(rdev);
         return r;
      }
      r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb);
      radeon_bo_unreserve(rdev->wb.wb_obj);
      if (r) {
         dev_warn(rdev->dev, "(%d) map WB bo failed\n", r);
         r600_wb_fini(rdev);
         return r;
      }
   }
   WREG32(SCRATCH_ADDR, (rdev->wb.gpu_addr >> 8) & 0xFFFFFFFF);
   WREG32(CP_RB_RPTR_ADDR, (rdev->wb.gpu_addr + 1024) & 0xFFFFFFFC);
   WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + 1024) & 0xFF);
   WREG32(SCRATCH_UMSK, 0xff);
   return 0;
}

void r600_fence_ring_emit(struct radeon_device *rdev,
           struct radeon_fence *fence)
{
   /* Also consider EVENT_WRITE_EOP.  it handles the interrupts + timestamps + events */

   radeon_ring_write(rdev, PACKET3(PACKET3_EVENT_WRITE, 0));
   radeon_ring_write(rdev, CACHE_FLUSH_AND_INV_EVENT);
   /* wait for 3D idle clean */
   radeon_ring_write(rdev, PACKET3(PACKET3_SET_CONFIG_REG, 1));
   radeon_ring_write(rdev, (WAIT_UNTIL - PACKET3_SET_CONFIG_REG_OFFSET) >> 2);
   radeon_ring_write(rdev, WAIT_3D_IDLE_bit | WAIT_3D_IDLECLEAN_bit);
   /* Emit fence sequence & fire IRQ */
   radeon_ring_write(rdev, PACKET3(PACKET3_SET_CONFIG_REG, 1));
   radeon_ring_write(rdev, ((rdev->fence_drv.scratch_reg - PACKET3_SET_CONFIG_REG_OFFSET) >> 2));
   radeon_ring_write(rdev, fence->seq);
   /* CP_INTERRUPT packet 3 no longer exists, use packet 0 */
   radeon_ring_write(rdev, PACKET0(CP_INT_STATUS, 0));
   radeon_ring_write(rdev, RB_INT_STAT);
}

int r600_copy_blit(struct radeon_device *rdev,
         uint64_t src_offset, uint64_t dst_offset,
         unsigned num_pages, struct radeon_fence *fence)
{
   int r;

   mutex_lock(&rdev->r600_blit.mutex);
   rdev->r600_blit.vb_ib = NULL;
   r = r600_blit_prepare_copy(rdev, num_pages * RADEON_GPU_PAGE_SIZE);
   if (r) {
      if (rdev->r600_blit.vb_ib)
         radeon_ib_free(rdev, &rdev->r600_blit.vb_ib);
      mutex_unlock(&rdev->r600_blit.mutex);
      return r;
   }
   r600_kms_blit_copy(rdev, src_offset, dst_offset, num_pages * RADEON_GPU_PAGE_SIZE);
   r600_blit_done_copy(rdev, fence);
   mutex_unlock(&rdev->r600_blit.mutex);
   return 0;
}

int r600_set_surface_reg(struct radeon_device *rdev, int reg,
          uint32_t tiling_flags, uint32_t pitch,
          uint32_t offset, uint32_t obj_size)
{
   /* FIXME: implement */
   return 0;
}
Pen

Desconectado Pengüin

  • Member
  • ***
  • Mensajes: 242
  • www.daboweb.com
Re:¿Para que sirve esto y cómo se compila?.
« Respuesta #1 en: 21 de Julio de 2012, 08:39:28 pm »
La parte que le sigue :

Citar
void r600_clear_surface_reg(struct radeon_device *rdev, int reg)
{
   /* FIXME: implement */
}


bool r600_card_posted(struct radeon_device *rdev)
{
   uint32_t reg;

   /* first check CRTCs */
   reg = RREG32(D1CRTC_CONTROL) |
      RREG32(D2CRTC_CONTROL);
   if (reg & CRTC_EN)
      return true;

   /* then check MEM_SIZE, in case the crtcs are off */
   if (RREG32(CONFIG_MEMSIZE))
      return true;

   return false;
}

int r600_startup(struct radeon_device *rdev)
{
   int r;

   if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) {
      r = r600_init_microcode(rdev);
      if (r) {
         DRM_ERROR("Failed to load firmware!\n");
         return r;
      }
   }

   r600_mc_program(rdev);
   if (rdev->flags & RADEON_IS_AGP) {
      r600_agp_enable(rdev);
   } else {
      r = r600_pcie_gart_enable(rdev);
      if (r)
         return r;
   }
   r600_gpu_init(rdev);
   r = r600_blit_init(rdev);
   if (r) {
      r600_blit_fini(rdev);
      rdev->asic->copy = NULL;
      dev_warn(rdev->dev, "failed blitter (%d) falling back to memcpy\n", r);
   }
   /* pin copy shader into vram */
   if (rdev->r600_blit.shader_obj) {
      r = radeon_bo_reserve(rdev->r600_blit.shader_obj, false);
      if (unlikely(r != 0))
         return r;
      r = radeon_bo_pin(rdev->r600_blit.shader_obj, RADEON_GEM_DOMAIN_VRAM,
            &rdev->r600_blit.shader_gpu_addr);
      radeon_bo_unreserve(rdev->r600_blit.shader_obj);
      if (r) {
         dev_err(rdev->dev, "(%d) pin blit object failed\n", r);
         return r;
      }
   }
   /* Enable IRQ */
   r = r600_irq_init(rdev);
   if (r) {
      DRM_ERROR("radeon: IH init failed (%d).\n", r);
      radeon_irq_kms_fini(rdev);
      return r;
   }
   r600_irq_set(rdev);

   r = radeon_ring_init(rdev, rdev->cp.ring_size);
   if (r)
      return r;
   r = r600_cp_load_microcode(rdev);
   if (r)
      return r;
   r = r600_cp_resume(rdev);
   if (r)
      return r;
   /* write back buffer are not vital so don't worry about failure */
   r600_wb_enable(rdev);
   return 0;
}

void r600_vga_set_state(struct radeon_device *rdev, bool state)
{
   uint32_t temp;

   temp = RREG32(CONFIG_CNTL);
   if (state == false) {
      temp &= ~(1<<0);
      temp |= (1<<1);
   } else {
      temp &= ~(1<<1);
   }
   WREG32(CONFIG_CNTL, temp);
}

int r600_resume(struct radeon_device *rdev)
{
   int r;

   /* Do not reset GPU before posting, on r600 hw unlike on r500 hw,
    * posting will perform necessary task to bring back GPU into good
    * shape.
    */
   /* post card */
   atom_asic_init(rdev->mode_info.atom_context);
   /* Initialize clocks */
   r = radeon_clocks_init(rdev);
   if (r) {
      return r;
   }

   r = r600_startup(rdev);
   if (r) {
      DRM_ERROR("r600 startup failed on resume\n");
      return r;
   }

   r = r600_ib_test(rdev);
   if (r) {
      DRM_ERROR("radeon: failled testing IB (%d).\n", r);
      return r;
   }

   r = r600_audio_init(rdev);
   if (r) {
      DRM_ERROR("radeon: audio resume failed\n");
      return r;
   }

   return r;
}

int r600_suspend(struct radeon_device *rdev)
{
   int r;

   r600_audio_fini(rdev);
   /* FIXME: we should wait for ring to be empty */
   r600_cp_stop(rdev);
   rdev->cp.ready = false;
   r600_irq_suspend(rdev);
   r600_wb_disable(rdev);
   r600_pcie_gart_disable(rdev);
   /* unpin shaders bo */
   if (rdev->r600_blit.shader_obj) {
      r = radeon_bo_reserve(rdev->r600_blit.shader_obj, false);
      if (!r) {
         radeon_bo_unpin(rdev->r600_blit.shader_obj);
         radeon_bo_unreserve(rdev->r600_blit.shader_obj);
      }
   }
   return 0;
}

/* Plan is to move initialization in that function and use
 * helper function so that radeon_device_init pretty much
 * do nothing more than calling asic specific function. This
 * should also allow to remove a bunch of callback function
 * like vram_info.
 */
int r600_init(struct radeon_device *rdev)
{
   int r;

   r = radeon_dummy_page_init(rdev);
   if (r)
      return r;
   if (r600_debugfs_mc_info_init(rdev)) {
      DRM_ERROR("Failed to register debugfs file for mc !\n");
   }
   /* This don't do much */
   r = radeon_gem_init(rdev);
   if (r)
      return r;
   /* Read BIOS */
   if (!radeon_get_bios(rdev)) {
      if (ASIC_IS_AVIVO(rdev))
         return -EINVAL;
   }
   /* Must be an ATOMBIOS */
   if (!rdev->is_atom_bios) {
      dev_err(rdev->dev, "Expecting atombios for R600 GPU\n");
      return -EINVAL;
   }
   r = radeon_atombios_init(rdev);
   if (r)
      return r;
   /* Post card if necessary */
   if (!r600_card_posted(rdev)) {
      if (!rdev->bios) {
         dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
         return -EINVAL;
      }
      DRM_INFO("GPU not posted. posting now...\n");
      atom_asic_init(rdev->mode_info.atom_context);
   }
   /* Initialize scratch registers */
   r600_scratch_init(rdev);
   /* Initialize surface registers */
   radeon_surface_init(rdev);
   /* Initialize clocks */
   radeon_get_clock_info(rdev->ddev);
   r = radeon_clocks_init(rdev);
   if (r)
      return r;
   /* Initialize power management */
   radeon_pm_init(rdev);
   /* Fence driver */
   r = radeon_fence_driver_init(rdev);
   if (r)
      return r;
   if (rdev->flags & RADEON_IS_AGP) {
      r = radeon_agp_init(rdev);
      if (r)
         radeon_agp_disable(rdev);
   }
   r = r600_mc_init(rdev);
   if (r)
      return r;
   /* Memory manager */
   r = radeon_bo_init(rdev);
   if (r)
      return r;

   r = radeon_irq_kms_init(rdev);
   if (r)
      return r;

   rdev->cp.ring_obj = NULL;
   r600_ring_init(rdev, 1024 * 1024);

   rdev->ih.ring_obj = NULL;
   r600_ih_ring_init(rdev, 64 * 1024);

   r = r600_pcie_gart_init(rdev);
   if (r)
      return r;

   rdev->accel_working = true;
   r = r600_startup(rdev);
   if (r) {
      dev_err(rdev->dev, "disabling GPU acceleration\n");
      r600_cp_fini(rdev);
      r600_wb_fini(rdev);
      r600_irq_fini(rdev);
      radeon_irq_kms_fini(rdev);
      r600_pcie_gart_fini(rdev);
      rdev->accel_working = false;
   }
   if (rdev->accel_working) {
      r = radeon_ib_pool_init(rdev);
      if (r) {
         dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
         rdev->accel_working = false;
      } else {
         r = r600_ib_test(rdev);
         if (r) {
            dev_err(rdev->dev, "IB test failed (%d).\n", r);
            rdev->accel_working = false;
         }
      }
   }

   r = r600_audio_init(rdev);
   if (r)
      return r; /* TODO error handling */
   return 0;
}

void r600_fini(struct radeon_device *rdev)
{
   r600_audio_fini(rdev);
   r600_blit_fini(rdev);
   r600_cp_fini(rdev);
   r600_wb_fini(rdev);
   r600_irq_fini(rdev);
   radeon_irq_kms_fini(rdev);
   r600_pcie_gart_fini(rdev);
   radeon_agp_fini(rdev);
   radeon_gem_fini(rdev);
   radeon_fence_driver_fini(rdev);
   radeon_clocks_fini(rdev);
   radeon_bo_fini(rdev);
   radeon_atombios_fini(rdev);
   kfree(rdev->bios);
   rdev->bios = NULL;
   radeon_dummy_page_fini(rdev);
}


/*
 * CS stuff
 */
void r600_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
   /* FIXME: implement */
   radeon_ring_write(rdev, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
   radeon_ring_write(rdev, ib->gpu_addr & 0xFFFFFFFC);
   radeon_ring_write(rdev, upper_32_bits(ib->gpu_addr) & 0xFF);
   radeon_ring_write(rdev, ib->length_dw);
}

int r600_ib_test(struct radeon_device *rdev)
{
   struct radeon_ib *ib;
   uint32_t scratch;
   uint32_t tmp = 0;
   unsigned i;
   int r;

   r = radeon_scratch_get(rdev, &scratch);
   if (r) {
      DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
      return r;
   }
   WREG32(scratch, 0xCAFEDEAD);
   r = radeon_ib_get(rdev, &ib);
   if (r) {
      DRM_ERROR("radeon: failed to get ib (%d).\n", r);
      return r;
   }
   ib->ptr[0] = PACKET3(PACKET3_SET_CONFIG_REG, 1);
   ib->ptr[1] = ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2);
   ib->ptr[2] = 0xDEADBEEF;
   ib->ptr[3] = PACKET2(0);
   ib->ptr[4] = PACKET2(0);
   ib->ptr[5] = PACKET2(0);
   ib->ptr[6] = PACKET2(0);
   ib->ptr[7] = PACKET2(0);
   ib->ptr[8] = PACKET2(0);
   ib->ptr[9] = PACKET2(0);
   ib->ptr[10] = PACKET2(0);
   ib->ptr[11] = PACKET2(0);
   ib->ptr[12] = PACKET2(0);
   ib->ptr[13] = PACKET2(0);
   ib->ptr[14] = PACKET2(0);
   ib->ptr[15] = PACKET2(0);
   ib->length_dw = 16;
   r = radeon_ib_schedule(rdev, ib);
   if (r) {
      radeon_scratch_free(rdev, scratch);
      radeon_ib_free(rdev, &ib);
      DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
      return r;
   }
   r = radeon_fence_wait(ib->fence, false);
   if (r) {
      DRM_ERROR("radeon: fence wait failed (%d).\n", r);
      return r;
   }
   for (i = 0; i < rdev->usec_timeout; i++) {
      tmp = RREG32(scratch);
      if (tmp == 0xDEADBEEF)
         break;
      DRM_UDELAY(1);
   }
   if (i < rdev->usec_timeout) {
      DRM_INFO("ib test succeeded in %u usecs\n", i);
   } else {
      DRM_ERROR("radeon: ib test failed (sracth(0x%04X)=0x%08X)\n",
           scratch, tmp);
      r = -EINVAL;
   }
   radeon_scratch_free(rdev, scratch);
   radeon_ib_free(rdev, &ib);
   return r;
}

/*
 * Interrupts
 *
 * Interrupts use a ring buffer on r6xx/r7xx hardware.  It works pretty
 * the same as the CP ring buffer, but in reverse.  Rather than the CPU
 * writing to the ring and the GPU consuming, the GPU writes to the ring
 * and host consumes.  As the host irq handler processes interrupts, it
 * increments the rptr.  When the rptr catches up with the wptr, all the
 * current interrupts have been processed.
 */

void r600_ih_ring_init(struct radeon_device *rdev, unsigned ring_size)
{
   u32 rb_bufsz;

   /* Align ring size */
   rb_bufsz = drm_order(ring_size / 4);
   ring_size = (1 << rb_bufsz) * 4;
   rdev->ih.ring_size = ring_size;
   rdev->ih.ptr_mask = rdev->ih.ring_size - 1;
   rdev->ih.rptr = 0;
}

static int r600_ih_ring_alloc(struct radeon_device *rdev)
{
   int r;

   /* Allocate ring buffer */
   if (rdev->ih.ring_obj == NULL) {
      r = radeon_bo_create(rdev, NULL, rdev->ih.ring_size,
                 true,
                 RADEON_GEM_DOMAIN_GTT,
                 &rdev->ih.ring_obj);
      if (r) {
         DRM_ERROR("radeon: failed to create ih ring buffer (%d).\n", r);
         return r;
      }
      r = radeon_bo_reserve(rdev->ih.ring_obj, false);
      if (unlikely(r != 0))
         return r;
      r = radeon_bo_pin(rdev->ih.ring_obj,
              RADEON_GEM_DOMAIN_GTT,
              &rdev->ih.gpu_addr);
      if (r) {
         radeon_bo_unreserve(rdev->ih.ring_obj);
         DRM_ERROR("radeon: failed to pin ih ring buffer (%d).\n", r);
         return r;
      }
      r = radeon_bo_kmap(rdev->ih.ring_obj,
               (void **)&rdev->ih.ring);
      radeon_bo_unreserve(rdev->ih.ring_obj);
      if (r) {
         DRM_ERROR("radeon: failed to map ih ring buffer (%d).\n", r);
         return r;
      }
   }
   return 0;
}

static void r600_ih_ring_fini(struct radeon_device *rdev)
{
   int r;
   if (rdev->ih.ring_obj) {
      r = radeon_bo_reserve(rdev->ih.ring_obj, false);
      if (likely(r == 0)) {
         radeon_bo_kunmap(rdev->ih.ring_obj);
         radeon_bo_unpin(rdev->ih.ring_obj);
         radeon_bo_unreserve(rdev->ih.ring_obj);
      }
      radeon_bo_unref(&rdev->ih.ring_obj);
      rdev->ih.ring = NULL;
      rdev->ih.ring_obj = NULL;
   }
}

static void r600_rlc_stop(struct radeon_device *rdev)
{

   if (rdev->family >= CHIP_RV770) {
      /* r7xx asics need to soft reset RLC before halting */
      WREG32(SRBM_SOFT_RESET, SOFT_RESET_RLC);
      RREG32(SRBM_SOFT_RESET);
      udelay(15000);
      WREG32(SRBM_SOFT_RESET, 0);
      RREG32(SRBM_SOFT_RESET);
   }

   WREG32(RLC_CNTL, 0);
}

static void r600_rlc_start(struct radeon_device *rdev)
{
   WREG32(RLC_CNTL, RLC_ENABLE);
}

static int r600_rlc_init(struct radeon_device *rdev)
{
   u32 i;
   const __be32 *fw_data;

   if (!rdev->rlc_fw)
      return -EINVAL;

   r600_rlc_stop(rdev);

   WREG32(RLC_HB_BASE, 0);
   WREG32(RLC_HB_CNTL, 0);
   WREG32(RLC_HB_RPTR, 0);
   WREG32(RLC_HB_WPTR, 0);
   WREG32(RLC_HB_WPTR_LSB_ADDR, 0);
   WREG32(RLC_HB_WPTR_MSB_ADDR, 0);
   WREG32(RLC_MC_CNTL, 0);
   WREG32(RLC_UCODE_CNTL, 0);

   fw_data = (const __be32 *)rdev->rlc_fw->data;
   if (rdev->family >= CHIP_RV770) {
      for (i = 0; i < R700_RLC_UCODE_SIZE; i++) {
         WREG32(RLC_UCODE_ADDR, i);
         WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
      }
   } else {
      for (i = 0; i < RLC_UCODE_SIZE; i++) {
         WREG32(RLC_UCODE_ADDR, i);
         WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
      }
   }
   WREG32(RLC_UCODE_ADDR, 0);

   r600_rlc_start(rdev);

   return 0;
}

static void r600_enable_interrupts(struct radeon_device *rdev)
{
   u32 ih_cntl = RREG32(IH_CNTL);
   u32 ih_rb_cntl = RREG32(IH_RB_CNTL);

   ih_cntl |= ENABLE_INTR;
   ih_rb_cntl |= IH_RB_ENABLE;
   WREG32(IH_CNTL, ih_cntl);
   WREG32(IH_RB_CNTL, ih_rb_cntl);
   rdev->ih.enabled = true;
}

static void r600_disable_interrupts(struct radeon_device *rdev)
{
   u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
   u32 ih_cntl = RREG32(IH_CNTL);

   ih_rb_cntl &= ~IH_RB_ENABLE;
   ih_cntl &= ~ENABLE_INTR;
   WREG32(IH_RB_CNTL, ih_rb_cntl);
   WREG32(IH_CNTL, ih_cntl);
   /* set rptr, wptr to 0 */
   WREG32(IH_RB_RPTR, 0);
   WREG32(IH_RB_WPTR, 0);
   rdev->ih.enabled = false;
   rdev->ih.wptr = 0;
   rdev->ih.rptr = 0;
}

static void r600_disable_interrupt_state(struct radeon_device *rdev)
{
   u32 tmp;

   WREG32(CP_INT_CNTL, 0);
   WREG32(GRBM_INT_CNTL, 0);
   WREG32(DxMODE_INT_MASK, 0);
   if (ASIC_IS_DCE3(rdev)) {
      WREG32(DCE3_DACA_AUTODETECT_INT_CONTROL, 0);
      WREG32(DCE3_DACB_AUTODETECT_INT_CONTROL, 0);
      tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY;
      WREG32(DC_HPD1_INT_CONTROL, tmp);
      tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY;
      WREG32(DC_HPD2_INT_CONTROL, tmp);
      tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY;
      WREG32(DC_HPD3_INT_CONTROL, tmp);
      tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY;
      WREG32(DC_HPD4_INT_CONTROL, tmp);
      if (ASIC_IS_DCE32(rdev)) {
         tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD5_INT_CONTROL, 0);
         tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY;
         WREG32(DC_HPD6_INT_CONTROL, 0);
      }
   } else {
      WREG32(DACA_AUTODETECT_INT_CONTROL, 0);
      WREG32(DACB_AUTODETECT_INT_CONTROL, 0);
      tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY;
      WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, 0);
      tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY;
      WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, 0);
      tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY;
      WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, 0);
   }
}

int r600_irq_init(struct radeon_device *rdev)
{
   int ret = 0;
   int rb_bufsz;
   u32 interrupt_cntl, ih_cntl, ih_rb_cntl;

   /* allocate ring */
   ret = r600_ih_ring_alloc(rdev);
   if (ret)
      return ret;

   /* disable irqs */
   r600_disable_interrupts(rdev);

   /* init rlc */
   ret = r600_rlc_init(rdev);
   if (ret) {
      r600_ih_ring_fini(rdev);
      return ret;
   }

   /* setup interrupt control */
   /* set dummy read address to ring address */
   WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8);
   interrupt_cntl = RREG32(INTERRUPT_CNTL);
   /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi
    * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN
    */
   interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE;
   /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */
   interrupt_cntl &= ~IH_REQ_NONSNOOP_EN;
   WREG32(INTERRUPT_CNTL, interrupt_cntl);

   WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8);
   rb_bufsz = drm_order(rdev->ih.ring_size / 4);

   ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE |
            IH_WPTR_OVERFLOW_CLEAR |
            (rb_bufsz << 1));
   /* WPTR writeback, not yet */
   /*ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;*/
   WREG32(IH_RB_WPTR_ADDR_LO, 0);
   WREG32(IH_RB_WPTR_ADDR_HI, 0);

   WREG32(IH_RB_CNTL, ih_rb_cntl);

   /* set rptr, wptr to 0 */
   WREG32(IH_RB_RPTR, 0);
   WREG32(IH_RB_WPTR, 0);

   /* Default settings for IH_CNTL (disabled at first) */
   ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10);
   /* RPTR_REARM only works if msi's are enabled */
   if (rdev->msi_enabled)
      ih_cntl |= RPTR_REARM;

#ifdef __BIG_ENDIAN
   ih_cntl |= IH_MC_SWAP(IH_MC_SWAP_32BIT);
#endif
   WREG32(IH_CNTL, ih_cntl);

   /* force the active interrupt state to all disabled */
   r600_disable_interrupt_state(rdev);

   /* enable irqs */
   r600_enable_interrupts(rdev);

   return ret;
}

void r600_irq_suspend(struct radeon_device *rdev)
{
   r600_disable_interrupts(rdev);
   r600_rlc_stop(rdev);
}

void r600_irq_fini(struct radeon_device *rdev)
{
   r600_irq_suspend(rdev);
   r600_ih_ring_fini(rdev);
}

int r600_irq_set(struct radeon_device *rdev)
{
   u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE;
   u32 mode_int = 0;
   u32 hpd1, hpd2, hpd3, hpd4 = 0, hpd5 = 0, hpd6 = 0;

   if (!rdev->irq.installed) {
      WARN(1, "Can't enable IRQ/MSI because no handler is installed.\n");
      return -EINVAL;
   }
   /* don't enable anything if the ih is disabled */
   if (!rdev->ih.enabled) {
      r600_disable_interrupts(rdev);
      /* force the active interrupt state to all disabled */
      r600_disable_interrupt_state(rdev);
      return 0;
   }

   if (ASIC_IS_DCE3(rdev)) {
      hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN;
      hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN;
      hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN;
      hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN;
      if (ASIC_IS_DCE32(rdev)) {
         hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN;
         hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN;
      }
   } else {
      hpd1 = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & ~DC_HPDx_INT_EN;
      hpd2 = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & ~DC_HPDx_INT_EN;
      hpd3 = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & ~DC_HPDx_INT_EN;
   }

   if (rdev->irq.sw_int) {
      DRM_DEBUG("r600_irq_set: sw int\n");
      cp_int_cntl |= RB_INT_ENABLE;
   }
   if (rdev->irq.crtc_vblank_int[0]) {
      DRM_DEBUG("r600_irq_set: vblank 0\n");
      mode_int |= D1MODE_VBLANK_INT_MASK;
   }
   if (rdev->irq.crtc_vblank_int[1]) {
      DRM_DEBUG("r600_irq_set: vblank 1\n");
      mode_int |= D2MODE_VBLANK_INT_MASK;
   }
   if (rdev->irq.hpd[0]) {
      DRM_DEBUG("r600_irq_set: hpd 1\n");
      hpd1 |= DC_HPDx_INT_EN;
   }
   if (rdev->irq.hpd[1]) {
      DRM_DEBUG("r600_irq_set: hpd 2\n");
      hpd2 |= DC_HPDx_INT_EN;
   }
   if (rdev->irq.hpd[2]) {
      DRM_DEBUG("r600_irq_set: hpd 3\n");
      hpd3 |= DC_HPDx_INT_EN;
   }
   if (rdev->irq.hpd[3]) {
      DRM_DEBUG("r600_irq_set: hpd 4\n");
      hpd4 |= DC_HPDx_INT_EN;
   }
   if (rdev->irq.hpd[4]) {
      DRM_DEBUG("r600_irq_set: hpd 5\n");
      hpd5 |= DC_HPDx_INT_EN;
   }
   if (rdev->irq.hpd[5]) {
      DRM_DEBUG("r600_irq_set: hpd 6\n");
      hpd6 |= DC_HPDx_INT_EN;
   }

   WREG32(CP_INT_CNTL, cp_int_cntl);
   WREG32(DxMODE_INT_MASK, mode_int);
   if (ASIC_IS_DCE3(rdev)) {
      WREG32(DC_HPD1_INT_CONTROL, hpd1);
      WREG32(DC_HPD2_INT_CONTROL, hpd2);
      WREG32(DC_HPD3_INT_CONTROL, hpd3);
      WREG32(DC_HPD4_INT_CONTROL, hpd4);
      if (ASIC_IS_DCE32(rdev)) {
         WREG32(DC_HPD5_INT_CONTROL, hpd5);
         WREG32(DC_HPD6_INT_CONTROL, hpd6);
      }
   } else {
      WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, hpd1);
      WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, hpd2);
      WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, hpd3);
   }

   return 0;
}

static inline void r600_irq_ack(struct radeon_device *rdev,
            u32 *disp_int,
            u32 *disp_int_cont,
            u32 *disp_int_cont2)
{
   u32 tmp;

   if (ASIC_IS_DCE3(rdev)) {
      *disp_int = RREG32(DCE3_DISP_INTERRUPT_STATUS);
      *disp_int_cont = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE);
      *disp_int_cont2 = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE2);
   } else {
      *disp_int = RREG32(DISP_INTERRUPT_STATUS);
      *disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE);
      *disp_int_cont2 = 0;
   }

   if (*disp_int & LB_D1_VBLANK_INTERRUPT)
      WREG32(D1MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK);
   if (*disp_int & LB_D1_VLINE_INTERRUPT)
      WREG32(D1MODE_VLINE_STATUS, DxMODE_VLINE_ACK);
   if (*disp_int & LB_D2_VBLANK_INTERRUPT)
      WREG32(D2MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK);
   if (*disp_int & LB_D2_VLINE_INTERRUPT)
      WREG32(D2MODE_VLINE_STATUS, DxMODE_VLINE_ACK);
   if (*disp_int & DC_HPD1_INTERRUPT) {
      if (ASIC_IS_DCE3(rdev)) {
         tmp = RREG32(DC_HPD1_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HPD1_INT_CONTROL, tmp);
      } else {
         tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp);
      }
   }
   if (*disp_int & DC_HPD2_INTERRUPT) {
      if (ASIC_IS_DCE3(rdev)) {
         tmp = RREG32(DC_HPD2_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HPD2_INT_CONTROL, tmp);
      } else {
         tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp);
      }
   }
   if (*disp_int_cont & DC_HPD3_INTERRUPT) {
      if (ASIC_IS_DCE3(rdev)) {
         tmp = RREG32(DC_HPD3_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HPD3_INT_CONTROL, tmp);
      } else {
         tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp);
      }
   }
   if (*disp_int_cont & DC_HPD4_INTERRUPT) {
      tmp = RREG32(DC_HPD4_INT_CONTROL);
      tmp |= DC_HPDx_INT_ACK;
      WREG32(DC_HPD4_INT_CONTROL, tmp);
   }
   if (ASIC_IS_DCE32(rdev)) {
      if (*disp_int_cont2 & DC_HPD5_INTERRUPT) {
         tmp = RREG32(DC_HPD5_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HPD5_INT_CONTROL, tmp);
      }
      if (*disp_int_cont2 & DC_HPD6_INTERRUPT) {
         tmp = RREG32(DC_HPD5_INT_CONTROL);
         tmp |= DC_HPDx_INT_ACK;
         WREG32(DC_HPD6_INT_CONTROL, tmp);
      }
   }
}

void r600_irq_disable(struct radeon_device *rdev)
{
   u32 disp_int, disp_int_cont, disp_int_cont2;

   r600_disable_interrupts(rdev);
   /* Wait and acknowledge irq */
   mdelay(1);
   r600_irq_ack(rdev, &disp_int, &disp_int_cont, &disp_int_cont2);
   r600_disable_interrupt_state(rdev);
}

static inline u32 r600_get_ih_wptr(struct radeon_device *rdev)
{
   u32 wptr, tmp;

   /* XXX use writeback */
   wptr = RREG32(IH_RB_WPTR);

   if (wptr & RB_OVERFLOW) {
      /* When a ring buffer overflow happen start parsing interrupt
       * from the last not overwritten vector (wptr + 16). Hopefully
       * this should allow us to catchup.
       */
      dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n",
         wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask);
      rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
      tmp = RREG32(IH_RB_CNTL);
      tmp |= IH_WPTR_OVERFLOW_CLEAR;
      WREG32(IH_RB_CNTL, tmp);
   }
   return (wptr & rdev->ih.ptr_mask);
}

/*        r600 IV Ring
 * Each IV ring entry is 128 bits:
 * [7:0]    - interrupt source id
 * [31:8]   - reserved
 * [59:32]  - interrupt source data
 * [127:60]  - reserved
 *
 * The basic interrupt vector entries
 * are decoded as follows:
 * src_id  src_data  description
 *      1         0  D1 Vblank
 *      1         1  D1 Vline
 *      5         0  D2 Vblank
 *      5         1  D2 Vline
 *     19         0  FP Hot plug detection A
 *     19         1  FP Hot plug detection B
 *     19         2  DAC A auto-detection
 *     19         3  DAC B auto-detection
 *    176         -  CP_INT RB
 *    177         -  CP_INT IB1
 *    178         -  CP_INT IB2
 *    181         -  EOP Interrupt
 *    233         -  GUI Idle
 *
 * Note, these are based on r600 and may need to be
 * adjusted or added to on newer asics
 */

int r600_irq_process(struct radeon_device *rdev)
{
   u32 wptr = r600_get_ih_wptr(rdev);
   u32 rptr = rdev->ih.rptr;
   u32 src_id, src_data;
   u32 ring_index, disp_int, disp_int_cont, disp_int_cont2;
   unsigned long flags;
   bool queue_hotplug = false;

   DRM_DEBUG("r600_irq_process start: rptr %d, wptr %d\n", rptr, wptr);
   if (!rdev->ih.enabled)
      return IRQ_NONE;

   spin_lock_irqsave(&rdev->ih.lock, flags);

   if (rptr == wptr) {
      spin_unlock_irqrestore(&rdev->ih.lock, flags);
      return IRQ_NONE;
   }
   if (rdev->shutdown) {
      spin_unlock_irqrestore(&rdev->ih.lock, flags);
      return IRQ_NONE;
   }

restart_ih:
   /* display interrupts */
   r600_irq_ack(rdev, &disp_int, &disp_int_cont, &disp_int_cont2);

   rdev->ih.wptr = wptr;
   while (rptr != wptr) {
      /* wptr/rptr are in bytes! */
      ring_index = rptr / 4;
      src_id =  rdev->ih.ring[ring_index] & 0xff;
      src_data = rdev->ih.ring[ring_index + 1] & 0xfffffff;

      switch (src_id) {
      case 1: /* D1 vblank/vline */
         switch (src_data) {
         case 0: /* D1 vblank */
            if (disp_int & LB_D1_VBLANK_INTERRUPT) {
               drm_handle_vblank(rdev->ddev, 0);
               disp_int &= ~LB_D1_VBLANK_INTERRUPT;
               DRM_DEBUG("IH: D1 vblank\n");
            }
            break;
         case 1: /* D1 vline */
            if (disp_int & LB_D1_VLINE_INTERRUPT) {
               disp_int &= ~LB_D1_VLINE_INTERRUPT;
               DRM_DEBUG("IH: D1 vline\n");
            }
            break;
         default:
            DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
            break;
         }
         break;
      case 5: /* D2 vblank/vline */
         switch (src_data) {
         case 0: /* D2 vblank */
            if (disp_int & LB_D2_VBLANK_INTERRUPT) {
               drm_handle_vblank(rdev->ddev, 1);
               disp_int &= ~LB_D2_VBLANK_INTERRUPT;
               DRM_DEBUG("IH: D2 vblank\n");
            }
            break;
         case 1: /* D1 vline */
            if (disp_int & LB_D2_VLINE_INTERRUPT) {
               disp_int &= ~LB_D2_VLINE_INTERRUPT;
               DRM_DEBUG("IH: D2 vline\n");
            }
            break;
         default:
            DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
            break;
         }
         break;
      case 19: /* HPD/DAC hotplug */
         switch (src_data) {
         case 0:
            if (disp_int & DC_HPD1_INTERRUPT) {
               disp_int &= ~DC_HPD1_INTERRUPT;
               queue_hotplug = true;
               DRM_DEBUG("IH: HPD1\n");
            }
            break;
         case 1:
            if (disp_int & DC_HPD2_INTERRUPT) {
               disp_int &= ~DC_HPD2_INTERRUPT;
               queue_hotplug = true;
               DRM_DEBUG("IH: HPD2\n");
            }
            break;
         case 4:
            if (disp_int_cont & DC_HPD3_INTERRUPT) {
               disp_int_cont &= ~DC_HPD3_INTERRUPT;
               queue_hotplug = true;
               DRM_DEBUG("IH: HPD3\n");
            }
            break;
         case 5:
            if (disp_int_cont & DC_HPD4_INTERRUPT) {
               disp_int_cont &= ~DC_HPD4_INTERRUPT;
               queue_hotplug = true;
               DRM_DEBUG("IH: HPD4\n");
            }
            break;
         case 10:
            if (disp_int_cont2 & DC_HPD5_INTERRUPT) {
               disp_int_cont &= ~DC_HPD5_INTERRUPT;
               queue_hotplug = true;
               DRM_DEBUG("IH: HPD5\n");
            }
            break;
         case 12:
            if (disp_int_cont2 & DC_HPD6_INTERRUPT) {
               disp_int_cont &= ~DC_HPD6_INTERRUPT;
               queue_hotplug = true;
               DRM_DEBUG("IH: HPD6\n");
            }
            break;
         default:
            DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
            break;
         }
         break;
      case 176: /* CP_INT in ring buffer */
      case 177: /* CP_INT in IB1 */
      case 178: /* CP_INT in IB2 */
         DRM_DEBUG("IH: CP int: 0x%08x\n", src_data);
         radeon_fence_process(rdev);
         break;
      case 181: /* CP EOP event */
         DRM_DEBUG("IH: CP EOP\n");
         break;
      default:
         DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
         break;
      }

      /* wptr/rptr are in bytes! */
      rptr += 16;
      rptr &= rdev->ih.ptr_mask;
   }
   /* make sure wptr hasn't changed while processing */
   wptr = r600_get_ih_wptr(rdev);
   if (wptr != rdev->ih.wptr)
      goto restart_ih;
   if (queue_hotplug)
      queue_work(rdev->wq, &rdev->hotplug_work);
   rdev->ih.rptr = rptr;
   WREG32(IH_RB_RPTR, rdev->ih.rptr);
   spin_unlock_irqrestore(&rdev->ih.lock, flags);
   return IRQ_HANDLED;
}

/*
 * Debugfs info
 */
#if defined(CONFIG_DEBUG_FS)

static int r600_debugfs_cp_ring_info(struct seq_file *m, void *data)
{
   struct drm_info_node *node = (struct drm_info_node *) m->private;
   struct drm_device *dev = node->minor->dev;
   struct radeon_device *rdev = dev->dev_private;
   unsigned count, i, j;

   radeon_ring_free_size(rdev);
   count = (rdev->cp.ring_size / 4) - rdev->cp.ring_free_dw;
   seq_printf(m, "CP_STAT 0x%08x\n", RREG32(CP_STAT));
   seq_printf(m, "CP_RB_WPTR 0x%08x\n", RREG32(CP_RB_WPTR));
   seq_printf(m, "CP_RB_RPTR 0x%08x\n", RREG32(CP_RB_RPTR));
   seq_printf(m, "driver's copy of the CP_RB_WPTR 0x%08x\n", rdev->cp.wptr);
   seq_printf(m, "driver's copy of the CP_RB_RPTR 0x%08x\n", rdev->cp.rptr);
   seq_printf(m, "%u free dwords in ring\n", rdev->cp.ring_free_dw);
   seq_printf(m, "%u dwords in ring\n", count);
   i = rdev->cp.rptr;
   for (j = 0; j <= count; j++) {
      seq_printf(m, "r[%04d]=0x%08x\n", i, rdev->cp.ring);
      i = (i + 1) & rdev->cp.ptr_mask;
   }
   return 0;
}

static int r600_debugfs_mc_info(struct seq_file *m, void *data)
{
   struct drm_info_node *node = (struct drm_info_node *) m->private;
   struct drm_device *dev = node->minor->dev;
   struct radeon_device *rdev = dev->dev_private;

   DREG32_SYS(m, rdev, R_000E50_SRBM_STATUS);
   DREG32_SYS(m, rdev, VM_L2_STATUS);
   return 0;
}

static struct drm_info_list r600_mc_info_list[] = {
   {"r600_mc_info", r600_debugfs_mc_info, 0, NULL},
   {"r600_ring_info", r600_debugfs_cp_ring_info, 0, NULL},
};
#endif

int r600_debugfs_mc_info_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
   return radeon_debugfs_add_files(rdev, r600_mc_info_list, ARRAY_SIZE(r600_mc_info_list));
#else
   return 0;
#endif
}

/**
 * r600_ioctl_wait_idle - flush host path cache on wait idle ioctl
 * rdev: radeon device structure
 * bo: buffer object struct which userspace is waiting for idle
 *
 * Some R6XX/R7XX doesn't seems to take into account HDP flush performed
 * through ring buffer, this leads to corruption in rendering, see
 * http://bugzilla.kernel.org/show_bug.cgi?id=15186 to avoid this we
 * directly perform HDP flush by writing register through MMIO.
 */
void r600_ioctl_wait_idle(struct radeon_device *rdev, struct radeon_bo *bo)
{
   WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);
}
:mrgreen: :mrgreen: :mrgreen: :mrgreen: :mrgreen: :mrgreen: :destroyer:
Pen

Desconectado vlad

  • Member
  • ***
  • Mensajes: 305
Re:¿Para que sirve esto y cómo se compila?.
« Respuesta #2 en: 23 de Julio de 2012, 07:25:08 pm »
Pues parecen los drivers del procesador gráfico de una tarjeta ATI. Pero vamos... no controlo C, no puedo decirte nada mas.

Salu2.
Es más fácil apoderarse del comandante en jefe de un ejército que despojar a un miserable de su libertad. (Confucio)

Desconectado shicefgo

  • Member
  • ***
  • Mensajes: 166
Re:¿Para que sirve esto y cómo se compila?.
« Respuesta #3 en: 23 de Julio de 2012, 10:32:16 pm »
¿De dónde has sacado ese archivo?

Eso forma parte del kernel, como bien dice vlad, es el driver de una ati.

Para compilar eso tendrías que compilar el kernel que lo tiene incluido.

http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/r600.c

Saludos.  :-)

Desconectado Pengüin

  • Member
  • ***
  • Mensajes: 242
  • www.daboweb.com
Re:¿Para que sirve esto y cómo se compila?.
« Respuesta #4 en: 23 de Julio de 2012, 11:54:54 pm »
¿De dónde has sacado ese archivo?

Eso forma parte del kernel, como bien dice vlad, es el driver de una ati.

Para compilar eso tendrías que compilar el kernel que lo tiene incluido.

http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/r600.c

Saludos.  :-)
Gracias , shicefgo y vlad por las respuestas , una pregunta si a la hora de compilar mi kernel lo añado al directorio que expecifica ¿Podria compilarse para luego ser utilizado y funcional?.Creo recordad que ya lo hice , no estoy segura y falló. :mrgreen: :mrgreen:
Pen

Desconectado Pengüin

  • Member
  • ***
  • Mensajes: 242
  • www.daboweb.com
Re:¿Para que sirve esto y cómo se compila?.
« Respuesta #5 en: 17 de Octubre de 2012, 06:00:39 pm »
Lo doy por solucionado. :destroyer:
Pen

 

Aviso Legal | Política de Privacidad | Política de Cookies

el contenido de la web se rige bajo licencia
Creative Commons License